【題目】如圖,一次函數(shù)的圖象與分別交于點(diǎn)和點(diǎn),與正比例函數(shù)圖象交于點(diǎn)

(1)求的值

(2)求的面積

(3)在直線上是否存在異與點(diǎn)的另一點(diǎn),使得的面積相等?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】(1),;(2)5;(3)存在, .

【解析】

試題(1)把點(diǎn)P的坐標(biāo)代入正比例函數(shù)中,可求出n的值,即可知P的坐標(biāo),再把P的坐標(biāo)代入一次函數(shù)y=-x+m中,可求出m的值;(2)的面積等于 ;(3)根據(jù)面積相等,求出點(diǎn)C到OB的距離為2,可得出C的橫坐標(biāo)的值,再根據(jù)點(diǎn)C在一次函數(shù)的圖象上,即可求出C的縱坐標(biāo);

試題解析:

(1)將代入,得

代入,得

,

(2)因?yàn)辄c(diǎn)B是一次函數(shù)y=-x+5與y軸的交點(diǎn),

所以點(diǎn)B的坐標(biāo)是(0,5)

(3)存在,

因?yàn)?/span>的面積相等,且

所以,

又因?yàn)镺B=5,

所以點(diǎn)C到OB的距離為2,

所以點(diǎn)C的橫坐標(biāo)為2或-2,

又因?yàn)辄c(diǎn)P的橫坐標(biāo)為2,

所以點(diǎn)C的橫坐標(biāo)為-2,

又因?yàn)辄c(diǎn)C在一次函數(shù)y=1.5x上,

所以點(diǎn)C的縱坐標(biāo)為-3,

所以點(diǎn)C的坐標(biāo)為(-2,-3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為獎勵該校在南山區(qū)第二屆學(xué)生技能大賽中表現(xiàn)突出的20名同學(xué),派李老師為這些同學(xué)購買獎品,要求每人一件,李老師到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇.如果買4個筆記本和2支鋼筆,則需86元;如果買3個筆記本和1支鋼筆,則需57元.

1)求筆記本和鋼筆的單價分別為多少元?

2)售貨員提示,購買筆記本沒有優(yōu)惠:買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠,若買xx10)支鋼筆,所需費(fèi)用為y元,請你求出yx之間的函數(shù)關(guān)系式;

3)在(2)的條件下,如果買同一種獎品,請你幫忙計算說明,買哪種獎品費(fèi)用更低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程有兩個實(shí)數(shù)根,且其中一個根為另一個根的2,那么稱這樣的方程為倍根方程”.例如,一元二次方程的兩個根是24,則方程就是倍根方程”.

(1)若一元二次方程倍根方程”,c ;

(2)倍根方程”,求代數(shù)式的值;

(3)若方程是倍根方程,且不同的兩點(diǎn)M(k+1,5),N(3-k,5)都在拋物線上,求一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為等邊三角形ABC內(nèi)一點(diǎn),連接OA,OBOC,將線段BO繞點(diǎn)B順時針旋轉(zhuǎn)60°到BM,連接CM,OM

1)求證:AOCM;

2)若OA8OC6,OB10,判斷△OMC的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球運(yùn)動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時間(單位:)之間的關(guān)系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結(jié)論:足球距離地面的最大高度為;足球飛行路線的對稱軸是直線;足球被踢出時落地;足球被踢出時,距離地面的高度是.

其中正確結(jié)論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,AB=AC,以AB為直徑的O分別交AC、BC于點(diǎn)D、E,BFO的切線,BFAC的延長線F.

(1)求證:CBF=CAB. (2)若AB=5,sinCBF=,求BC和BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為( 。

A. a2 B. a2 C. a2 D. a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù) yax2bxc(a≠0)的圖象的一部分,給出下列命題:①abc0b2a;ax2bxc0的兩根分別為-31;a2bc0.其中正確的命題是( )

A. ①② B. ②③ C. ①③ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案