【題目】已知反比例函數(shù)和一次函數(shù)的圖象都經(jīng)過點P(m,-3m).
(1)求點P的坐標和一次函數(shù)的解析式;
(2)若點M(a,y1)和點N(a+1,y2)(a>0)都在反比例函數(shù)的圖象上,試通過計算或利用反比例的性質(zhì),說明y1與y2的大。
【答案】(1)P(1,-3), y=-2x-1;(2)y1<y2
【解析】試題分析:(1)將點P(m,-3m)代入反比例函數(shù)解析式可得m=1,故P的坐標(1,-3);再將點P(1,-3)代入一次函數(shù)解析式可得:-3=k-1,故k=-2;故一次函數(shù)的解析式為y=-2x-1;
(2)根據(jù)反比例函數(shù)的性質(zhì),根據(jù)a+1>a,即可判斷出y1小于y2.
試題解析:(1)將點P(m,-3m)代入反比例函數(shù)解析式可得:-3m=-3,即m=1,故P的坐標(1,-3),
將點P(1,-3)代入一次函數(shù)解析式可得:-3=k-1,故k=-2,
故一次函數(shù)的解析式為y=-2x-1;
(2)∵點M(a,y1)和點N(a+1,y2)(a>0)都在反比例函數(shù) 的圖象上,
a+1>a,
∴y1<y2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線經(jīng)過點 A (-2,0)、 B (4,0)、 C (0,-8),拋物線 y = a x 2 + b x + c (a≠0)與直線 y = x -4交于 B , D 兩點.
(1)求拋物線的解析式并直接寫出 D 點的坐標;
(2)點 P 為拋物線上的一個動點,且在直線 BD 下方,試求出△ BDP 面積的最大值及此時點 P 的坐標;
(3)點 Q 是線段 BD 上異于 B 、 D 的動點,過點 Q 作 QF ⊥ x 軸于點 F , 交拋物線于點 G . 當△ QDG 為直角三角形時,求點 Q 的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班要購買一批籃球和足球.已知籃球的單價比足球的單價貴40元,花1500元購買的籃球的個數(shù)與花900元購買的足球的個數(shù)恰好相等.
(1)籃球和足球的單價各是多少元?
(2)若該班恰好用完1000元購買的籃球和足球,則購買的方案有哪幾種?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計劃開鑿隧道A,B兩地直線貫通,經(jīng)測量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形紙片ABCD中,AB=6,BC=8.
(1)將矩形紙片沿BD折疊,點A落在點E處(如圖①),設(shè)DE與BC相交于點F,求BF的長;
(2)將矩形紙片折疊,使點B與點D重合(如圖②),求折痕GH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】騎共享單車已成為人們喜愛的一種綠色出行方式.已知A、B、C三家公司的共享單車都是按騎車時間收費,標準如下:
公司 | 單價(元/半小時) | 充值優(yōu)惠 |
A | m | 充20元送5元,即:充20元實得25元 |
B | m-0.2 | 無 |
C | 1 | 充20元送20元,即:充20元實得40元 |
(注:使用這三家公司的共享單車,不足半小時均按半小時計費.用戶的賬戶余額長期有效,但不可提現(xiàn).)
4月初,李明注冊成了A公司的用戶,張紅注冊成了B公司的用戶,并且兩人在各自賬戶上分別充值20元.一個月下來,李明、張紅兩人使用單車的次數(shù)恰好相同,且每次都在半小時以內(nèi),結(jié)果到月底李明、張紅的賬戶余額分別顯示為5元、8元.
(1)求m的值;
(2)5月份,C公司在原標準的基礎(chǔ)上又推出新優(yōu)惠:每月的月初給用戶送出5張免費使用券(1
次用車只能使用1張券).如果王磊每月使用單車的次數(shù)相同,且在30次以內(nèi),每次用車都不超過
半小時. 若要在這三家公司中選擇一家并充值20元,僅從資費角度考慮,請你幫他作出選擇,并說
明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點,連接EF,點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時,點Q從點D出發(fā),沿DB方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設(shè)運動時間為t(0<t<4)s,解答下列問題:
(1)求證:△BEF∽△DCB;
(2)當點Q在線段DF上運動時,若△PQF的面積為0.6cm2,求t的值;
(3)如圖2過點Q作QG⊥AB,垂足為G,當t為何值時,四邊形EPQG為矩形,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com