【題目】如圖,AB是圓⊙O的直徑,BC是⊙O的切線,連結(jié)AC交⊙O于點D,E上一點,連結(jié)AE、BE,BEAC于點F,且AE2=EFEB

(1)求證:CB=CF.

(2)若點E到弦AD的距離為1,cosC=,求⊙O的半徑.

【答案】(1)證明見解析;(2)O的半徑是

【解析】

(1)如圖1,由已知證明AEF∽△BEA,根據(jù)相似三角形的對應(yīng)角相等可得∠1=EAB,再根據(jù)∠1=2,3=EAB,從而可得∠2=3,繼而可得CB=CF;

(2)如圖2,連接OEAC于點G,設(shè)⊙O的半徑是r,由(1)可得∠4=5,繼而可得,從而可得EG=1,根據(jù)cosC=,且∠C+GAO=90°,可得sinGAO=繼而可求得半徑長.

1)如圖1,AE2=EFEB,

,

又∵∠AEF=AEB,

∴△AEF∽△BEA,

∴∠1=EAB.

∵∠1=2,3=EAB,

∴∠2=3,

CB=CF;

(2)如圖2,連接OEAC于點G,設(shè)⊙O的半徑是r,

由(1)知,AEF∽△BEA,則∠4=5,

,

OEAD,

EG=1,

cosC=,且∠C+GAO=90°,

sinGAO=,

,即,

解得,r=,

即⊙O的半徑是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖a是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖b的形狀,拼成一個正方形.

1圖b中的陰影部分面積為 ;

觀察圖b,請你寫出三個代數(shù)式,,mn之間的等量關(guān)系是

3若x+y=6,xy=2.75,利用提供的等量關(guān)系計算:xy=

4實際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖C,它表示了2+3mn+=m+n)(2m+n,試畫出一個幾何圖形的面積是+4ab+3,并能利用這個圖形將+4ab+3進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條直線上依次有A、B、C三自行車愛好者甲、乙兩同時分別從A、B兩地出發(fā),沿直線勻速向C已知甲的速度為20 km/h,設(shè)甲、乙兩行駛x(h)后,與A的距離分別為y1 、y2 (km), y1 、y2 與x的函數(shù)關(guān)系如圖所示.

(1)y2x的函數(shù)關(guān)系

2若兩人在出發(fā)時都配備了通話距離為3km的對講機(jī),求甲、乙兩人在騎行過程中可以用對講機(jī)通話的時間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中,∠ACB=90°,BC=5,點 P 在邊 AB 上,連接 CP.將△BCP 沿直線CP 翻折后,點 B 恰好落在邊 AC 的中點處,則點 P AC 的距離是( )

A. 2.5 B. C. 3.5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知等邊三角形ABC,點PAB的中點,點D、E分別為邊AC、BC上的點,∠APD+BPE=60°.
1)①若PDACPEBC,直接寫出PD、PE的數(shù)量關(guān)系:____;

②如圖1,證明:AP=AD+BE
2)如圖2,點FH分別在線段BC、AC上,連接線段PHPF,若PDPFPD=PFHPEP.求∠FHP的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形腰長為2,有一個內(nèi)角為80°,則它的底邊長上的高為__.(精確到0.01,參考數(shù)據(jù):sin50°≈0.766;sin80°≈0.985)

查看答案和解析>>

同步練習(xí)冊答案