【題目】某市正在進(jìn)行商業(yè)街改造,商業(yè)街起點(diǎn)在古民居P的南偏西60°方向上的A處,現(xiàn)已改造至古民居P南偏西30°方向上的B處,A與B相距150m,且B在A的正東方向.為不破壞古民居的風(fēng)貌,按照有關(guān)規(guī)定,在古民居周圍100m以內(nèi)不得修建現(xiàn)代化商業(yè)街.若工程隊(duì)繼續(xù)向正東方向修建200m商業(yè)街到C處,則對于從B到C的商業(yè)街改造是否違反有關(guān)規(guī)定?

【答案】解:不違反有關(guān)規(guī)定.
過點(diǎn)P作PD⊥BC,垂足為D.
在Rt△APD中,∠APD=60°,
∴tan60°= =
∴AD= PD,(3分)
在Rt△BPD中,∠BPD=30°
∴tan30°= =
∴3BD= PD,
∴AD=3BD,
∴AB=2BD,
∴2BD=150m,
∴BD=75m,
∴PD=75 m,
∵75 >100,
∴沒有違反有關(guān)規(guī)定.

【解析】首先過點(diǎn)P作PD⊥BC,垂足為D,然后分別在Rt△APD與Rt△BPD,求得AD與PD,BD與PD的關(guān)系,又由AB=150,即可求得BD,PD的長,繼而求得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解關(guān)于方向角問題的相關(guān)知識,掌握指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)2﹣(﹣7)﹣13+(﹣7)

(2)18﹣6÷(﹣2)×(﹣

(3)﹣23÷[(﹣2)3﹣(﹣4)]

(4)(0.25﹣)×(﹣36)

(5)0﹣23÷(﹣4)3

(6)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,在AOBCOD中,OA=OB,OC=OD,AOB=COD=50°

(1)求證:①AC=BD;②APB=50°;

(2)如圖②,在AOBCOD中,OA=OB,OC=OD,AOB=COD=α,則AC與BD間的等量關(guān)系為 ,APB的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們環(huán)保意識的不斷增強(qiáng),我市家庭電動自行車的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2009年底擁有家庭電動自行車125輛,2011年底家庭電動自行車的擁有量達(dá)到180輛.
(1)若該小區(qū)2009年底到2012年底家庭電動自行車擁有量的年平均增長率相同,則該小區(qū)到2012年底電動自行車將達(dá)到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資3萬元再建若干個停車位,據(jù)測算,建造費(fèi)用分別為室內(nèi)車位1000元/個,露天車位200元/個.考慮到實(shí)際因素,計(jì)劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,則該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國道路交通管理?xiàng)l例規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方30 m,過了2 s,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠有甲、乙兩種型號的機(jī)器生產(chǎn)同樣的產(chǎn)品,兩種型號的機(jī)器一共48臺,其中甲型號機(jī)器比乙型號機(jī)器多10臺.

(1)乙型號機(jī)器有   臺(請直接寫出答案);

(2)若已知4臺甲型號機(jī)器一天生產(chǎn)的產(chǎn)品裝滿6箱后還剩8個,5臺乙型號機(jī)器的產(chǎn)品還缺1個就可以裝滿8箱,每臺甲型號機(jī)器比每臺乙型號機(jī)器一天多生產(chǎn)1個產(chǎn)品,求每箱裝多少個產(chǎn)品?

(3)在前兩問的條件下,若某天有2臺甲型號機(jī)器和若干臺乙型號機(jī)器同時開工,問這天生產(chǎn)的產(chǎn)品能否恰好裝滿35箱,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點(diǎn).
(1)若E、F分別是AB、AC上的點(diǎn),且AE=CF,求證:△AED≌△CFD;
(2)當(dāng)點(diǎn)F、E分別從C、A兩點(diǎn)同時出發(fā),以每秒1個單位長度的速度沿CA、AB運(yùn)動,到點(diǎn)A、B時停止;設(shè)△DEF的面積為y,F(xiàn)點(diǎn)運(yùn)動的時間為x,求y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)F、E分別沿CA、AB的延長線繼續(xù)運(yùn)動,求此時y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全球氣候變暖導(dǎo)致-些冰川融化并消失,在冰川|消失12年后,一種低等植物苔蘚,就開始在巖石上生長,每一個苔蘚都會長成近似的圓形,苔蘚的直徑和其生長年限近似地滿足如下的關(guān)系式:d=7 (t≥12),其中d表示苔蘚的直徑,單位是厘米,t代表冰川消失的時間(單位:年)。

(1)計(jì)算冰川消失16年后苔蘚的直徑為多少厘米?

(2)如果測得一些苔蘚的直徑是35厘米,問冰川約是在多少年前消失的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD的邊AB在數(shù)軸上,數(shù)軸上點(diǎn)A表示的數(shù)為-1,正方形ABCD的面積為16

1)數(shù)軸上點(diǎn)B表示的數(shù)為 ;

2將正方形ABCD沿?cái)?shù)軸水平移動移動后的正方形記為,移動后的正方形與原正方形ABCD重疊部分的面積記為S

當(dāng)S =4,畫出圖形,并求出數(shù)軸上點(diǎn)表示的數(shù)

設(shè)正方形ABCD的移動速度為每秒2個單位長度,點(diǎn)E為線段的中點(diǎn),點(diǎn)F在線段,. 經(jīng)過秒后,點(diǎn)E,F所表示的數(shù)互為相反數(shù),直接寫出的值

查看答案和解析>>

同步練習(xí)冊答案