【題目】已知:如圖①,在AOBCOD中,OA=OB,OC=OD,AOB=COD=50°

(1)求證:①AC=BD;②APB=50°;

(2)如圖②,在AOBCOD中,OA=OB,OC=OD,AOB=COD=α,則AC與BD間的等量關(guān)系為 ,APB的大小為

【答案】(1)見(jiàn)解析;(2)AC=BD,α.

【解析】

試題分析:(1)根據(jù)AOB=COD=50°求出AOC=BOD,根據(jù)SAS推出AOC≌△BOD,根據(jù)全等三角形的性質(zhì)得出AC=BD,CAO=DBO,

根據(jù)三角形內(nèi)角和可知CAO+AOB=DBO+APB,推出APB=AOB即可.

(2)根據(jù)AOB=COD=50°求出AOC=BOD,根據(jù)SAS推出AOC≌△BOD,根據(jù)全等三角形的性質(zhì)得出AC=BD,CAO=DBO,

根據(jù)三角形內(nèi)角和可知CAO+AOB=DBO+APB,推出APB=AOB即可.

證明:(1)∵∠AOB=COD=50°,

∴∠AOC=BOD,

AOCBOD中,

∴△AOC≌△BOD,

AC=BD,CAO=DBO,

根據(jù)三角形內(nèi)角和可知CAO+AOB=DBO+APB,

∴∠APB=AOB=50°

(2)解:AC=BD,APB=α,

理由是:)∵∠AOB=COD=50°

∴∠AOC=BOD,

AOCBOD中,

∴△AOC≌△BOD

AC=BD,CAO=DBO

根據(jù)三角形內(nèi)角和可知CAO+AOB=DBO+APB,

∴∠APB=AOB=α,

故答案為:AC=BD,α.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小紅做了一個(gè)實(shí)驗(yàn),將正六邊形ABCDEF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)后到達(dá)A′B′C′D′E′F′的位置,所轉(zhuǎn)過(guò)的度數(shù)是(  )
A.60°
B.72°
C.108°
D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB、AC的垂直平分線(xiàn)分別交BC于點(diǎn)E、F.

(1)若△AEF的周長(zhǎng)為10cm,則BC的長(zhǎng)為______cm.

(2)若∠EAF=100°,則∠BAC______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格圖中小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形,已知三角形ABC的三個(gè)頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,按要求完成下列各小題.

(1)請(qǐng)?jiān)趫D中畫(huà)出將三角形ABC先向上平移1個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度后的圖形,即三角形A′B′C′,并指出圖中相等的線(xiàn)段;

(2)在(1)的基礎(chǔ)上,A′B′,B′C′分別與AC交于點(diǎn)E,F(xiàn).若∠A=50°,∠C′=51°,分別求出∠A′EF與∠B′FC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為⊙O外一點(diǎn),PA、PB為⊙O的切線(xiàn),A、B為切點(diǎn),AC為⊙O的直徑,PO交于⊙O于點(diǎn)E.
(1)試判斷∠APB與∠BAC的數(shù)量關(guān)系;
(2)若⊙O的半徑為4,P是⊙O外一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PAOB為正方形?若存在,請(qǐng)求出PO的長(zhǎng),并判斷點(diǎn)P的個(gè)數(shù)及其滿(mǎn)足的條件;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,△ABC的頂點(diǎn)和線(xiàn)段EF的端點(diǎn)都在邊長(zhǎng)為1的小正方形的頂點(diǎn)上.
(1)填空:tanA= , AC=(結(jié)果保留根號(hào));
(2)請(qǐng)你在圖中找出一點(diǎn)D(僅一個(gè)點(diǎn)即可),連接DE、DF,使以D、E、F為頂點(diǎn)的三角形與△ABC全等,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】手機(jī)上網(wǎng)已經(jīng)成為當(dāng)今年輕人時(shí)尚的網(wǎng)絡(luò)生活,某網(wǎng)絡(luò)公司看中了這種商機(jī),推出了兩種手機(jī)上網(wǎng)的計(jì)費(fèi)方式:方式A以每分鐘0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外,再以每分鐘0.06元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi).假設(shè)某客戶(hù)月手機(jī)上網(wǎng)的時(shí)間為x分鐘,上網(wǎng)費(fèi)用為y元.
(1)分別寫(xiě)出該客戶(hù)按A、B兩種方式的上網(wǎng)費(fèi)y(元)與每月上網(wǎng)時(shí)間x(分鐘)的函數(shù)關(guān)系式,并在右圖的坐標(biāo)系中畫(huà)出這兩個(gè)函數(shù)的圖象;
(2)如何選擇計(jì)費(fèi)方式能使該客戶(hù)上網(wǎng)費(fèi)用更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市正在進(jìn)行商業(yè)街改造,商業(yè)街起點(diǎn)在古民居P的南偏西60°方向上的A處,現(xiàn)已改造至古民居P南偏西30°方向上的B處,A與B相距150m,且B在A的正東方向.為不破壞古民居的風(fēng)貌,按照有關(guān)規(guī)定,在古民居周?chē)?00m以?xún)?nèi)不得修建現(xiàn)代化商業(yè)街.若工程隊(duì)繼續(xù)向正東方向修建200m商業(yè)街到C處,則對(duì)于從B到C的商業(yè)街改造是否違反有關(guān)規(guī)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖與計(jì)算

1)已知:

求作:在圖2中,以OA為一邊,在∠AOB的內(nèi)部作.∠AOC(要求:直尺和圓規(guī)作圖,不寫(xiě)作法,保留圖痕跡.

2)過(guò)點(diǎn)O分別引射線(xiàn)OA、OB、OC,且∠AOB=65°,∠BOC=30°,求∠AOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案