【題目】手機上網(wǎng)已經(jīng)成為當今年輕人時尚的網(wǎng)絡生活,某網(wǎng)絡公司看中了這種商機,推出了兩種手機上網(wǎng)的計費方式:方式A以每分鐘0.1元的價格按上網(wǎng)時間計費;方式B除收月基費20元外,再以每分鐘0.06元的價格按上網(wǎng)時間計費.假設某客戶月手機上網(wǎng)的時間為x分鐘,上網(wǎng)費用為y元.
(1)分別寫出該客戶按A、B兩種方式的上網(wǎng)費y(元)與每月上網(wǎng)時間x(分鐘)的函數(shù)關系式,并在右圖的坐標系中畫出這兩個函數(shù)的圖象;
(2)如何選擇計費方式能使該客戶上網(wǎng)費用更合算?
【答案】
(1)解:方式A:y=0.1x,
方式B:y=0.06x+20,
方式A,當x=100時,y=10,
所以y=0.1x經(jīng)過點坐標原點與(100,10),
方式B,當x=0時,y=20,
當x=500時,y=0.06×500+20=50,
所以經(jīng)過點(0,20),(500,50),
作出圖象如圖;
(2)解:當0.1x=0.06x+20時,解得x=500,
所以,當x<500時,選擇方式A上網(wǎng)更合算,
當x=500時,選擇方式A與方式B上網(wǎng)一樣合算,
當x>500時,選擇方式B上網(wǎng)更合算.
【解析】(1)根據(jù)A種方式的上網(wǎng)費等于單價乘以上網(wǎng)時間,B種方式的上網(wǎng)費等于上網(wǎng)單價乘以上網(wǎng)時間再加上月基費20元,然后列出函數(shù)關系式即可;再利用兩點法畫出函數(shù)圖象;(2)求出兩函數(shù)交點坐標,然后根據(jù)時間段,選擇下方的方式可以使上網(wǎng)費用更合算.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用兩張等寬的紙條交叉重疊地放在一起,重合的四邊形ABCD是一個特殊的四邊形.
(1)這個特殊的四邊形應該叫做;
(2)請證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠CFE為________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°
(1)求證:①AC=BD;②∠APB=50°;
(2)如圖②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,則AC與BD間的等量關系為 ,∠APB的大小為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解學生課外閱讀的情況,對學生“平均每天課外閱讀的時間”進行了隨機抽樣調查,如圖是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)平均每天課外閱讀的時間為“0.5~1小時”部分的扇形圖的圓心角為多少度;
(2)本次一共調查了多少名學生;
(3)將條形圖補充完整;
(4)若該校有1680名學生,請估計該校有多少名學生平均每天課外閱讀的時間在0.5小時以下.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們環(huán)保意識的不斷增強,我市家庭電動自行車的擁有量逐年增加.據(jù)統(tǒng)計,某小區(qū)2009年底擁有家庭電動自行車125輛,2011年底家庭電動自行車的擁有量達到180輛.
(1)若該小區(qū)2009年底到2012年底家庭電動自行車擁有量的年平均增長率相同,則該小區(qū)到2012年底電動自行車將達到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資3萬元再建若干個停車位,據(jù)測算,建造費用分別為室內(nèi)車位1000元/個,露天車位200元/個.考慮到實際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,則該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方30 m處,過了2 s后,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點.
(1)若E、F分別是AB、AC上的點,且AE=CF,求證:△AED≌△CFD;
(2)當點F、E分別從C、A兩點同時出發(fā),以每秒1個單位長度的速度沿CA、AB運動,到點A、B時停止;設△DEF的面積為y,F(xiàn)點運動的時間為x,求y與x的函數(shù)關系式;
(3)在(2)的條件下,點F、E分別沿CA、AB的延長線繼續(xù)運動,求此時y與x的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠XOY=90°,等邊三角形PAB的頂點P與O點重合,頂點A是射線OX上的一個定點,另一個頂點B在∠XOY的內(nèi)部.
(1)當頂點P在射線OY上移動到點P1時,連接AP1 , 請用尺規(guī)作圖;在∠XOY內(nèi)部作出以AP1為邊的等邊△AP1B1(要求保留作圖痕跡,不要求寫作法和證明);
(2)設AP1交OB于點C,AB的延長線交B1P1于點D.求證:△ABC∽△AP1D;
(3)連接BB1 , 求證:∠ABB1=90°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com