如圖①,將一個量角器與一張等腰三角形(△ABC)紙片放置成軸對稱圖形.∠ACB=90°,CD⊥AB,垂足為D,半圓(量角器)的圓心與點D重合,測得CE=5cm;將量角器沿DC方向平移2cm,半圓(量角器)恰與△ABC的邊AC,BC相切,如圖②.則AB的邊長為    cm.(精確到0.1cm)
【答案】分析:如圖,設圖②中半圓的圓心為O,與BC的切點為M,連接OM,根據切線的性質可以得到∠OMC=90°,而根據已知條件可以得到∠DCB=45°,設AB為2x,根據等腰直角三角形的性質得到CD=BD=x,而CE=5cm,又將量角器沿DC方向平移2cm,由此得到半圓的半徑為x-5,OC=x-2,然后在Rt△OCM中利用三角函數(shù)可以列出關于x的方程,解方程即可求解.
解答:解:如圖,設圖②中半圓的圓心為O,與BC的切點為M,
連接OM,
則OM⊥MC,
∴∠OMC=90°,
依題意知道∠DCB=45°,
設AB為2x,
∵△ABC是等腰直角三角形,
∴CD=BD=x,
而CE=5cm,又將量角器沿DC方向平移2cm,
∴半圓的半徑為x-5,OC=x-2,
∴sin∠DCB==,
=,
∴x=,
∴AB=2x=2×≈24.5(cm).
故答案為:24.5.
點評:本題考查了圓的切線性質,及解直角三角形的知識.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

將一個量角器和一個含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,且BC=OD.
(1)求證:DB∥CF;
(2)當OD=2時,若以O、B、F為頂點的三角形與△ABC相似,求OB.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一個量角器和一個含30°角的直角三角板如圖1放置,圖2是由它抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,BC=OD
(1)求證:FC∥DB;
(2)當OD=3,sin∠ABD=
35
時,求AF的長.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,將一個量角器與一張等腰三角形(△ABC)紙片放置成軸對稱圖形.∠ACB=90°,CD⊥AB,垂足為D,半圓(量角器)的圓心與點D重合,測得CE=5cm;將量角器沿DC方向平移2cm,半圓(量角器)恰與△ABC的邊AC,BC相切,如圖精英家教網②.則AB的邊長為
 
cm.(精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一個量角器和一個含30度角的直角三角板如圖1放置,圖2是由它抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,且BC=OD.求證:DB∥CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一個量角器和一個含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,且BC=OD.
(1)求證:DB∥CF;
(2)當OD=2時,若以O、B、F為頂點的三角形與△ABC相似,求弧
EF
的長度.

查看答案和解析>>

同步練習冊答案