【題目】在一個不透明的盒子中放有三張卡片,每張卡片上寫有1個實數,分別為1,2,3.(卡片除了實數不同外,其余均相同)
(1)從盒子中隨機抽取一張卡片,請直接寫出卡片上的實數是2的概率_______;
(2)先從盒子中隨機抽取一張卡片,將卡片上的實數作為點P的橫坐標,卡片不放回,再隨機抽取一張卡片,將卡片上的實數作為點P的縱坐標,兩次抽取的卡片上的實數分別作為點P的橫縱坐標.請你用列表法或樹狀圖法,求出點P在反比例函數上的概率.
科目:初中數學 來源: 題型:
【題目】初三(1)班針對“垃圾分類”知曉情況對全班學生進行專題調查活動,對“垃圾分類”的知曉情況分為、、、四類.其中,類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”,每名學生可根據自己的情況任選其中一類,班長根據調查結果進行了統(tǒng)計,并繪制成了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
“垃圾分類”知曉情況各類別人數條形統(tǒng)計圖 “垃圾分類”知曉情況各類別人數扇形統(tǒng)計圖
根據以上信息解決下列問題:
(1)初三(1)班參加這次調查的學生有______人,扇形統(tǒng)計圖中類別所對應扇形的圓心角度數為______°;
(2)求出類別的學生數,并補全條形統(tǒng)計圖;
(3)類別的4名學生中有2名男生和2名女生,現從這4名學生中隨機選取2名學生參加學校“垃圾分類”知識競賽,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC為⊙O的直徑,B為AC延長線上一點,且∠BAD=∠ABD=30°,BC=1,AD為⊙O的弦,連結BD,連結DO并延長交⊙O于點E,連結BE交⊙O于點M.
(1)求證:直線BD是⊙O的切線;
(2)求⊙O的半徑OD的長;
(3)求線段BM的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.
(1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?
(2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O是坐標原點,拋物線經過A(-5,0),兩點,連接AB,BO.
(1)求拋物線表達式;
(2)點C是第三象限內的一個動點,若△AOC與△AOB全等,請直接寫出點C坐標______;
(3)若點D從點O出發(fā)沿線段OA向點A作勻速運動,速度為每秒1個單位長度,同時線段OA上另一個點H從點A出發(fā)沿線段AO向點O作勻速運動,速度為每秒2個單位長度(當點H到達點O時,點D也同時停止運動).過點D作x軸的垂線,與直線OB交于點E,延長DE到點F,使得EF=DE,以DF為邊,在DF左側作等邊三角形DGF(當點D運動時,點G、點F也隨之運動).過點H作x軸的垂線,與直線AB交于點L,延長HL到點M,使得LM=HL,以HM為邊,在HM的右側作等邊三角形HMN(當點H運動時,點M、點N也隨之運動).當點D運動t秒時,△DGF有一條邊所在直線恰好過△HMN的重心,直接寫出此刻t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.“三角形任意兩邊之差小于第三邊”是必然事件
B.在連續(xù)5次的測試中,兩名同學的平均分相同,方差較大的同學成績更穩(wěn)定
C.某同學連續(xù)10次拋擲質量均勻的硬幣,6次正面向上,因此正面向上的概率是60%
D.檢測某品牌筆芯的使用壽命,適宜用普查
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在中,點分別在上,且.設的邊上的高為,的邊上的高為.
(1)若、的面積分別為3,1,則 ;
(2)設、、四邊形的面積分別為,求證:;
(3)如圖②,在中,點分別在上,點在上,且, . 若、、的面積分別為3, 7, 5,求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過x軸上的點A(1,0)和點B及y軸上的點C,經過B、C兩點的直線為.
①求拋物線的解析式.
②點P從A出發(fā),在線段AB上以每秒1個單位的速度向B運動,同時點E從B出發(fā),在線段BC上以每秒2個單位的速度向C運動.當其中一個點到達終點時,另一點也停止運動.設運動時間為t秒,求t為何值時,△PBE的面積最大并求出最大值.
③過點A作于點M,過拋物線上一動點N(不與點B、C重合)作直線AM的平行線交直線BC于點Q.若點A、M、N、Q為頂點的四邊形是平行四邊形,求點N的橫坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com