【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,EBC的中點,AD⊥AE

1)求證:AC2=CD·BC;

2)過EEG⊥AB,并延長EG至點K,使EK=EB

若點H是點D關(guān)于AC的對稱點,點FAC的中點,求證:FH⊥GH;

∠B=30°,求證:四邊形AKEC是菱形.

【答案】1)證明過程見解析;(2)證明過程見解析.

【解析】

1)欲證明AC2=CDBC,只需推知△ACD∽△BCA即可;(2連接AH.構(gòu)建直角△AHC,利用直角三角形斜邊上的中線等于斜邊的一半、等腰對等角以及等量代換得到:∠FHG=∠CAB=90°,即FH⊥GH;

利用在直角三角形中,30度角所對的直角邊等于斜邊的一半、直角三角形斜邊上的中線等于斜邊的一半推知四邊形AKEC的四條邊都相等,則四邊形AKEC是菱形.

解:(1∵AC平分∠BCD,∴∠DCA=∠ACB

∵AC⊥ABAD⊥AE,

∴∠DAC+∠CAE=90°∠CAE+∠EAB=90°,

∴∠DAC=∠EAB

∵EBC的中點, ∴AE=BE,

∴∠EAB=∠ABC,∴∠DAC=∠ABC,

∴△ACD∽△BCA,,

=CD·BC;

2證明:連接AH∵∠ADC=∠BAC=90°,點H、D關(guān)于AC對稱,∴AH⊥BC

∵EG⊥ABAE=BE,

GAB的中點,

∴HG=AG,∴∠GAH=∠GHA

FAC的中點,

∴AF=FH,∴∠HAF=∠FHA,

∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,

∴FH⊥GH;

②∵EK⊥AB,AC⊥AB, ∴EK∥AC

∵∠B=30°,∴AC=BC=EB=EC

EK=EB,∴EK=AC,

AK=KE=EC=CA,四邊形AKEC是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過原點O的拋物線(a0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).

(1)求這條拋物線的表達式;

(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;

(3)如圖2,若點M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點P,使得POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將大小相同的正三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有6個小三角形和1個正六邊形;第②個圖案中有10個小三角形和2個正六邊形;第③個圖案中有14個小三角形和3個正六邊形;;按此規(guī)律排列下去,已知一個小三角形的面積為a,一個正六邊形的面積為b,則第⑧個圖案中所有的小三角形和正六邊形的面積之和為____________(結(jié)果用含a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為(,1),下列結(jié)論:其中正確的個數(shù)是(  )

①a0;

②b0;

③c0;

;

⑤a+b+c0

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線BCyx軸于點B,點Ax軸正半軸上,OC為△ABC的中線,C的坐標為(m

1)求線段CO的長;

2)點DOC的延長線上,連接AD,點EAD的中點,連接CE,設(shè)點D的橫坐標為t,△CDE的面積為S,求St的函數(shù)解析式;

3)在(2)的條件下,點F為射線BC上一點,連接DB、DF,且∠FDB=∠OBD,CE,求此時S值及點F坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+12分別與y軸,x軸交于A,B兩點,點My軸上,以點M為圓心的⊙M與直線AB相切于點D,連接MD.

(1)求證:△ADM∽△AOB.

(2)如果⊙M的半徑為2,請寫出點M的坐標,并寫出以點為頂點,且過點M的拋物線的函數(shù)表達式.

(3)(2)的條件下,試問在此拋物線上是否存在點P,使以P,AM三點為頂點的三角形與△AOB相似?如果存在,請求出所有符合條件的點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線ACBD相交于點O,點EBC上的一個動點,連接DE,交AC于點F

1)如圖①,當(dāng)時,求的值;

2)如圖②,當(dāng)點EBC的中點時,過點FFGBC于點G,求證:CG=BG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2x3x軸的交點為AD(AD的右側(cè)),與y軸的交點為C.

(1)直接寫出A、DC三點的坐標;

(2)若點M在拋物線上,使得MAD的面積與CAD的面積相等,求點M的坐標;

(3)設(shè)點C關(guān)于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以AB、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點A,B,C都在⊙O上,連接AB,AC,點D,E分別在AC,AB上,連接CE并延長交⊙O于點F,連接BD,BF,∠BDC﹣∠BFC2ABF

1)如圖1,求證:∠ABD2ACF;

2)如圖2,CEBD于點G,過點GGMAC于點M,若AMMD,求證:AEGD

3)如圖3,在(2)的條件下,當(dāng)AEBE87時,連接DE,且∠ADE30°.延長BD交⊙O于點H,連接AHAH8,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案