【題目】如圖,平面直角坐標(biāo)系中,將含30°的三角尺的直角頂點(diǎn)C落在第二象限.其斜邊兩端點(diǎn)A、B分別落在x軸、y軸上且AB=12cm

(1)若OB=6cm.

①求點(diǎn)C的坐標(biāo);

②若點(diǎn)A向右滑動的距離與點(diǎn)B向上滑動的距離相等,求滑動的距離;

(2)點(diǎn)C與點(diǎn)O的距離的最大值是多少cm.

【答案】(1)①點(diǎn)C的坐標(biāo)為(-3,9);②滑動的距離為6(﹣1)cm;(2)OC最大值12cm.

【解析】

試題(1過點(diǎn)Cy軸的垂線,垂足為D,根據(jù)30°的直角三角形的性質(zhì)解答即可;設(shè)點(diǎn)A向右滑動的距離為x,根據(jù)題意得點(diǎn)B向上滑動的距離也為x,根據(jù)銳角三角函數(shù)和勾股定理解答即可;(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y),過CCE⊥x軸,CD⊥y軸,垂足分別為ED,證得△ACE∽△BCD,利用相似三角形的性質(zhì)解答即可.

試題解析:解:(1過點(diǎn)Cy軸的垂線,垂足為D,如圖1

Rt△AOB中,AB=12,OB=6,則BC=6

∴∠BAO=30°,∠ABO=60°

∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,

∴BD=3,CD=3,

所以點(diǎn)C的坐標(biāo)為(﹣39);

設(shè)點(diǎn)A向右滑動的距離為x,根據(jù)題意得點(diǎn)B向上滑動的距離也為x,如圖2

AO=12×cos∠BAO=12×cos30°=6

∴A'O=6﹣xB'O=6+x,A'B'=AB=12

△A'O B'中,由勾股定理得,

6﹣x2+6+x2=122,解得:x=6﹣1),

滑動的距離為6﹣1);

2)設(shè)點(diǎn)C的坐標(biāo)為(xy),過CCE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3

OE=﹣xOD=y,

∵∠ACE+∠BCE=90°∠DCB+∠BCE=90°,

∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,

∴△ACE∽△BCD

,即

∴y=﹣x,

OC2=x2+y2=x2+x2=4x2,

當(dāng)|x|取最大值時,即Cy軸距離最大時,OC2有最大值,即OC取最大值,如圖,即當(dāng)C'B'旋轉(zhuǎn)到與y軸垂直時.此時OC=12,

故答案為:12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時,配方有錯誤的是( )

A.x2﹣2x﹣99=0化為(x﹣1)2=100

B.x2+8x+9=0化為(x+4)2=25

C.2t2﹣7t﹣4=0化為(t﹣2=

D.3x2﹣4x﹣2=0化為(x﹣2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為正方形ABCD的邊CD上一點(diǎn),BP的垂直平分線EF分別交BC、AD于E、F兩點(diǎn),GP⊥EP交AD于點(diǎn)G,連接BG交EF于點(diǎn) H,下列結(jié)論:①BP=EF;②∠FHG=45°;③以BA為半徑⊙B與GP相切;④若G為AD的中點(diǎn),則DP=2CP.其中正確結(jié)論的序號是(  )

A. ①②③④ B. 只有①②③ C. 只有①②④ D. 只有①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E、F分別在邊AB、BC、CA上,且DECA,DFBA.

下列四種說法:①四邊形AEDF是平行四邊形;②如果BAC=90°,那么四邊形AEDF是矩形;③如果AD平分BAC,那么四邊形AEDF是菱形;④如果ADBC且AB=AC,那么四邊形AEDF是菱形.

其中,正確的有( ) 個.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊(duì)同時挖掘兩段長度相等的隧道,如圖是甲、乙兩隊(duì)挖掘隧道長度()與挖掘時間()之間關(guān)系的部分圖象.請解答下列問題:

在前小時的挖掘中,甲隊(duì)的挖掘速度為 /小時,乙隊(duì)的挖掘速度為 /小時.

①當(dāng)時,求出之間的函數(shù)關(guān)系式;

②開挖幾小時后,兩工程隊(duì)挖掘隧道長度相差?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,彈性小球從P(2,0)出發(fā),沿所示方向運(yùn)動,每當(dāng)小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當(dāng)小球第一次碰到正方形的邊時的點(diǎn)為P1,第二次碰到正方形的邊時的點(diǎn)為P2,第n次碰到正方形的邊時的點(diǎn)為Pn,則P2020的坐標(biāo)是( 。

A.(53)B.(3,5)C.(02)D.(2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達(dá)目的地兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關(guān)系如圖所示

1)根據(jù)圖象信息,當(dāng)t   分鐘時甲乙兩人相遇,甲的速度為   /分鐘;

2)求出線段AB所表示的函數(shù)表達(dá)式

3)甲、乙兩人何時相距400米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位運(yùn)動員在一段2000米長的筆直公路上進(jìn)行跑步比賽,比賽開始時甲在起點(diǎn),乙在甲的前面200米,他們同時同向出發(fā)勻速前進(jìn),甲的速度是8米/秒,乙的速度是6米/秒,先到終點(diǎn)者在終點(diǎn)原地等待.設(shè)甲、乙兩人之間的距離是y米,比賽時間是x秒,當(dāng)兩人都到達(dá)終點(diǎn)計時結(jié)束,整個過程中y與之間的函數(shù)圖象是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,公路AB和公路CD在點(diǎn)P處交匯,點(diǎn)E處有一所學(xué)校,EP160米,點(diǎn)E到公路AB的距高EF80米,假若拖拉機(jī)行駛時,周圍100米內(nèi)會受到噪音影響,那么拖拉機(jī)在公路AB上沿方向行駛時,學(xué)校是否受到影響,請說明理由;如果受到影響,已知拖拉機(jī)的速度是18千米/小時,那么學(xué)校受到影響的時間為多少?

查看答案和解析>>

同步練習(xí)冊答案