如圖,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q兩點分別在線段AC和過點A且垂直于AC的射線AM上運動,且點P不與點A,C重合,那么當點P運動到什么位置時,才能使△ABC與△APQ全等?
分析:本題要分情況討論:①Rt△APQ≌Rt△CBA,此時AP=BC=10,可據(jù)此求出P點的位置.
②Rt△QAP≌Rt△BCA,此時AP=AC,P、C重合,不合題意.
解答:解:根據(jù)三角形全等的判定方法HL可知:
①當P運動到AP=BC時,
∵∠C=∠QAP=90°,
在Rt△ABC與Rt△QPA中,
AP=BC
PQ=AB
,
∴Rt△ABC≌Rt△QPA(HL),
即AP=BC=10;
②當P運動到與C點重合時,AP=AC,不合題意.
綜上所述,當點P運動到距離點A為10時,△ABC與△APQ全等.
點評:本題考查三角形全等的判定方法和全等三角形的性質(zhì),判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本題沒有說明全等三角形的對應邊和對應角,因此要分類討論,以免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在直角三角形ABC中∠C=90°,則sinA=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角三角形中,一直角邊比另一直角邊長1,且斜邊長為5.
(1)請畫出這個直角三角形的內(nèi)切圓;
(2)并求出此內(nèi)切圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角三角形ABC中,AD為斜邊上的垂線,AE為角平分線,AF為中線,
(1)證明:AF=BF=CF;
(2)寫出∠FAE和∠DAE的關系并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角三角形ABC中,∠C=90°,AB=4,陰影部分的面積為( 。
A、2πB、3πC、4πD、6π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一條線段PQ=AB,P、Q兩點分別在AC和AC的垂線AX上移動,則當AP=
5cm或10cm
時,才能使△ABC和△APQ全等.

查看答案和解析>>

同步練習冊答案