【題目】如圖,已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點(diǎn)A和點(diǎn)B.

(1)求該二次函數(shù)的表達(dá)式;

(2)寫出該拋物線的對(duì)稱軸及頂點(diǎn)坐標(biāo);

(3)點(diǎn)P(m,m)與點(diǎn)Q均在該函數(shù)圖象上(其中m>0),且這兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,求m的值及點(diǎn)Qx軸的距離.

【答案】(1)二次函數(shù)的表達(dá)式為y=x2-4x-6.(2)對(duì)稱軸為x=2,頂點(diǎn)坐標(biāo)為(2,-10).(3)m=6;6.

【解析】

(1)直接利用待定系數(shù)法求出拋物線解析式;

(2)由(1)得出的拋物線解析式,配方確定出對(duì)稱軸和頂點(diǎn)坐標(biāo);

(3)由點(diǎn)P(m,m)在拋物線上,確定出M的坐標(biāo),再利用對(duì)稱性確定出點(diǎn)Q坐標(biāo)即可.

(1)將x=-1、y=-1;x=3、y=-9代入y=ax2-4x+c,

,

解得

∴二次函數(shù)的表達(dá)式為y=x2-4x-6.

(2)y=x2-4x-6=(x-2)2-10,

∴對(duì)稱軸為x=2,頂點(diǎn)坐標(biāo)為(2,-10).

(3)將(m,m)代入y=x2-4x-6,得:m=m2-4m-6,

解得m1=-1,m2=6.

m>0,

m1=-1不合題意,舍去.

m=6.

∵點(diǎn)P與點(diǎn)Q關(guān)于對(duì)稱軸x=2對(duì)稱,

∴點(diǎn)Qx軸的距離為6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實(shí)驗(yàn),他們共拋了60次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如表:

向上點(diǎn)數(shù)

1

2

3

4

5

6

出現(xiàn)次數(shù)

8

10

7

9

16

10

(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.

(2)丙說:如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.請(qǐng)判斷丙的說法是否正確并說明理由.

(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EFFD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°AB=AD,B+D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD請(qǐng)證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+4的圖象l1分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)的圖象l2l1交于點(diǎn)Cm,3),過動(dòng)點(diǎn)Mn,0)作x軸的垂線與直線l1l2分別交于P、Q兩點(diǎn).

1)求m的值及l2的函數(shù)表達(dá)式;

2)當(dāng)PQ≤4時(shí),求n的取值范圍;

3)是否存在點(diǎn)P,使SOPC2SOBC?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013420日,四川雅安發(fā)生里氏7.0級(jí)地震,救援隊(duì)救援時(shí),利用生命探測儀在某建筑物廢墟下方探測到點(diǎn)C處有生命跡象,已知廢墟一側(cè)地面上兩探測點(diǎn)A、B相距4米,探測線與地面的夾角分別為300600,如圖所示,試確定生命所在點(diǎn)C的深度(結(jié)果精確到0.1米,參考數(shù)據(jù)≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有A、B兩個(gè)餐廳,甲、乙兩名學(xué)生各自隨機(jī)選擇其中一個(gè)餐廳用餐,請(qǐng)用列表或畫樹狀圖的方法解答:

(1)甲、乙兩名學(xué)生在同一餐廳用餐的概率;

(2)甲、乙兩名學(xué)生至少有一人在B餐廳的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行”,20171,某公司向深圳市場新投放共享單車640.

(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000.請(qǐng)問該公司4月份在深圳市新投放共享單車多少輛?

(2)考慮到自行車市場需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購進(jìn)A,B兩種規(guī)格的自行車100輛,已知A型的進(jìn)價(jià)為500/輛,售價(jià)為700/輛,B型車進(jìn)價(jià)為1000/輛,售價(jià)為1300/輛。假設(shè)所進(jìn)車輛全部售完,為了使利潤最大,該商城應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一拱橋所在弧所對(duì)的圓心角為120°(∠AOB=120°),半徑為5 m,一艘6 m寬的船裝載一集裝箱,已知箱頂寬3.2 m,離水面AB2 m,問此船能過橋洞嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計(jì)圖表.

某校抽查的學(xué)生文章閱讀的篇數(shù)統(tǒng)計(jì)表

文章閱讀的篇數(shù)(篇)

3

4

5

6

7 及以上

人數(shù)(人)

10

14

m

8

6

請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

1)求被抽查的學(xué)生人數(shù)和 m 的值;

2 求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);

3)若該校共有 1200 名學(xué)生,根據(jù)抽查結(jié)果,估計(jì)該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為 4 篇的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案