【題目】2013420日,四川雅安發(fā)生里氏7.0級地震,救援隊救援時,利用生命探測儀在某建筑物廢墟下方探測到點C處有生命跡象,已知廢墟一側(cè)地面上兩探測點A、B相距4米,探測線與地面的夾角分別為300600,如圖所示,試確定生命所在點C的深度(結(jié)果精確到0.1米,參考數(shù)據(jù)≈1.41,≈1.73

【答案】3.5

【解析】

解:如圖,過點CCD⊥ABAB于點D

探測線與地面的夾角為300600,

∴∠CAD=300,∠CBD=600

Rt△BDC中,

。

Rt△ADC中,,

∵AB=AD﹣BD=4,,∴CD=2≈3.5(米)。

答:生命所在點C的深度大約為3.5米。

過點CCD⊥ABAB于點D,則∠CAD=300,∠CBD=600,在Rt△BDC中,,在Rt△ADC中,,然后根據(jù)AB=AD﹣BD=4,即可得到CD的方程,解方程即可。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以的邊、為邊分別向外作,且,,連接、

1)求證:;

2)試判斷的面積之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖是一塊邊長為1,周長記為P1的等邊三角形紙板,沿圖的底邊剪去一塊邊長 的等邊三角形紙板后得到圖,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉等邊三角形紙板邊長的 )后,得圖,,,記第nn≥3)塊紙板的周長為Pn,則Pn-Pn-1=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人分別從A,B兩地同時出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達B地后,乙繼續(xù)前行.設(shè)出發(fā)xh后,兩人相距ykm,圖中折線表示從兩人出發(fā)至乙到達A地的過程中yx之間的函數(shù)關(guān)系.

1)根據(jù)圖中信息,求出點Q的坐標,并說明它的實際意義;

2)求甲、乙兩人的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并按要求解答.

(模型建立)如圖①,等腰直角三角形ABC中,∠ACB90°CBCA,直線ED經(jīng)過點C,過AADED于點D,過BBEED于點E.求證:BEC≌△CDA

(模型應用)

應用1:如圖②,在四邊形ABCD中,∠ADC90°,AD6CD8,BC10,AB2200.求線段BD的長.

應用2:如圖 ③,在平面直角坐標系中,紙片OPQ為等腰直角三角形,QOQP,P4,m),點Q始終在直線OP的上方.

1)折疊紙片,使得點P與點O重合,折痕所在的直線l過點Q且與線段OP交于點M,當m2時,求Q點的坐標和直線lx軸的交點坐標;

2)若無論m取何值,點Q總在某條確定的直線上,請直接寫出這條直線的解析式   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點A和點B.

(1)求該二次函數(shù)的表達式;

(2)寫出該拋物線的對稱軸及頂點坐標;

(3)點P(m,m)與點Q均在該函數(shù)圖象上(其中m>0),且這兩點關(guān)于拋物線的對稱軸對稱,求m的值及點Qx軸的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線經(jīng)過原點,過點軸的垂線交直線于點,過點作直線的垂線交軸于點;過點軸的垂線交直線于點,過點作直線的垂線交軸于點按此作法繼續(xù)下去,則點的坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次數(shù)學課外實踐活動中,要求測量山坡前某建筑物的高度AB.小剛在D處用高1.5m的測角儀CD,測得該建筑物頂端A的仰角為45°,然后沿傾斜角為30°的山坡向上前進20m到達E,重新安裝好測角儀后又測得該建筑物頂端A的仰角為60°.求該建筑物的高度AB.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲?qū)﹄p方公平嗎?請說明現(xiàn)由.

查看答案和解析>>

同步練習冊答案