【題目】如圖,一農(nóng)戶(hù)要建一個(gè)矩形豬舍,豬舍的一邊利用長(zhǎng)為12m的住房墻,另外三邊用25m長(zhǎng)的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門(mén),所圍矩形豬舍的長(zhǎng)、寬分別為多少時(shí),豬舍面積為80m2?

【答案】解:設(shè)矩形豬舍垂直于住房墻一邊長(zhǎng)為xm可以得出平行于墻的一邊的長(zhǎng)為(25-2x+1)m , 由題意得
x(25-2x+1)=80,
化簡(jiǎn),得x-13x+40=0,
解得:x1=5,x2=8,
當(dāng)x=5時(shí),26-2x=16>12(舍去),當(dāng)x=8時(shí),26-2x=10<12,
答:所圍矩形豬舍的長(zhǎng)為10m、寬為8m

【解析】設(shè)矩形豬舍垂直于住房墻一邊長(zhǎng)為xm可以得出平行于墻的一邊的長(zhǎng)為(25-2x+1)m . 根據(jù)矩形的面積公式建立方程求出其解

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F,且AE=CF.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ab互為相反數(shù),c、d互為倒數(shù),|x|=2018,求2a+2b++cdx的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購(gòu)物中心第一次用5000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

20

30

售價(jià)(元/件)

29

40

(1)新瑪特購(gòu)物中心將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣(mài)完后一共可獲得多少利潤(rùn)?

(2)該購(gòu)物中心第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷(xiāo)售,乙商品打折銷(xiāo)售,第二次兩種商品都銷(xiāo)售完以后獲得總利潤(rùn)比第一次獲得的總利潤(rùn)多160元,求第二次乙種商品是按原價(jià)打幾折銷(xiāo)售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形中,,,邊上一點(diǎn),連接,過(guò)點(diǎn),,垂足分別為,如圖1.

1請(qǐng)?zhí)骄?/span>,這三條線段有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

2)若點(diǎn)的延長(zhǎng)線上,如圖2,那么這三條線段的數(shù)量關(guān)系是 (直接寫(xiě)結(jié)果)

(3)若點(diǎn)的延長(zhǎng)線上,如圖3,那么這三條線段的數(shù)量關(guān)系是 (直接寫(xiě)結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y= x+4與x軸、y軸分別交于A、B兩點(diǎn),把△A0B繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AO′B′,則點(diǎn)B′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)若x,y都是實(shí)數(shù),且,求5x+13y+6的立方根;

(2)已知ABC的三邊長(zhǎng)分別為a,b,c,且滿(mǎn)足,求c的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是(
A.( 2=9
B. =﹣2
C.(﹣2)0=﹣1
D.|﹣5﹣3|=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為放置在水平桌面上的臺(tái)燈的平面示意圖,燈臂AO長(zhǎng)為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺(tái)燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

同步練習(xí)冊(cè)答案