【題目】如圖,矩形ABCD是由三個全等矩形拼成的,AC與DE、EF、FG、HG、HB分別交于點P、Q、K、M、N,設△EPQ、△GKM、△BNC的面積依次為S1、S2、S3.若S1+S3=30,則S2的值為( ).
A.6B.8
C.10D.12
【答案】D
【解析】
根據矩形的性質和平行四邊形的性質判斷出△AQE∽△AMG∽△ACB,得到,,再通過證明得到△PQE∽△KMG∽△NCB,利用面積比等于相似比的平方,得到S1、S2、S3的關系,進而可得到答案.
解:∵矩形ABCD是由三個全等矩形拼成的,
∴AE=EG=GB=DF=FH=HC,∠AEQ=∠AGM=∠ABC=90°,AB∥CD,AD∥EF∥GH∥BC
∴∠AQE=∠AMG=∠ACB,
∴△AQE∽△AMG∽△ACB,
∴,
∵EG= DF=GB=FH AB∥CD,(已證)
∴四邊形DEGF,四邊形FGBH是平行四邊形,
∴DE∥FG∥HB
∴∠QPE=∠MKG=∠CNB,
∴△PQE∽△KMG∽△NCB
∴
,
∴,
∵S1+S3=30,
∴S2=12.
故選:D.
科目:初中數學 來源: 題型:
【題目】為了解“生物”學科學生的學習狀況,某校從七年級學生中隨機抽取了部分學生進行測試,測試結果分為四個等級::優(yōu)秀,:良好,:及格,:不及格,并將結果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據圖中信息回答下列問題:
(1)共抽取了多少名學生進行測試?
(2)通過計算補全條形統(tǒng)計圖;
(3)該校七年級學生共有450名學生,請你估計該!吧铩睂W科不及格的學生人數是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC三頂點A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),△A'B'C'與△ABC關于y軸對稱.
(1)直接寫出A'、B'、C'的坐標;
(2)畫出△A'B'C';
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,隨著社會經濟的發(fā)展,人們的環(huán)境保護意識也在逐步增強.某社區(qū)設立了“保護環(huán)境愛我地球”的宣傳牌.已知立桿AB的高度是3m,從地面上某處D點測得宣傳牌頂端C點和底端B點的仰角分別是62°和45°.求宣傳牌的高度BC的長.(精確到0.1m,參考數據:sin62°=0.83,cos62°=0.47,tan62°=1.88)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校招聘數學教師,本次招聘進行專業(yè)技能測試和課堂教學展示兩個項目的考核,這兩項考核的滿分均為100分,學校將這兩個項目的得分按一定的比例計算出總成績.經統(tǒng)計,參加考核的4名考生的兩個項目的得分如下:
(1)經過計算,1號考生的總成績?yōu)?/span>78分,求專業(yè)技能測試得分和課堂教學展示得分分別占總成績的百分比;
(2)若學校錄取總成績最高的考生,通過計算說明,4名考生中哪一名考生會被錄。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:點A、點B在直線的兩側.
(點A到直線的距離小于點B到直線的距離).
如圖, (1)作點B關于直線的對稱點C; (2)以點C為圓心,的長為半徑作,交于點E; (3)過點A作的切線,交于點F,交直線于點P; (4)連接、. |
根據以上作圖過程及所作圖形,下列四個結論中:
①是的切線; ②平分;
③; ④.
所有正確結論的序號是___________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】五張正面分別寫有數字:﹣3,﹣2,0,1,2的卡片,它們的背面完全相同,現將這五張卡片背面朝上洗勻.
(1)從中任意抽取一張卡片,則所抽卡片上數字的絕對值不小于1的概率是 ;
(2)先從中任意抽取一張卡片,以其正面數字作為m的值,然后再從剩余的卡片中隨機抽一張,以其正面的數字作為n的值,請用列表法或畫樹狀圖法,求點Q(m,n)在第四象限的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,,頂點C的坐標為,x反比例函數的圖象與菱形對角線AO交于點D,連接BD,當軸時,k的值是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com