有公共端點
有公共端點
的兩條射線組成的圖形叫做角.
分析:根據(jù)角的概念可直接得到答案.
解答:解:有公共端點的兩條射線組成的圖形叫做角,
故答案為:有公共端點.
點評:此題主要考查了角的概念,關鍵是掌握角的定義:有公共端點是兩條射線組成的圖形叫做角,其中這個公共端點是角的頂點,這兩條射線是角的兩條邊.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連接PA,PB,構成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角)
(1)當動點P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當動點P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關系,并寫出動點P的具體位置和相應的結論.選擇其中一種結論加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下面的說法正確的是( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AC∥BD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連接PA、PB,構成∠PAC、∠APB、∠PBD三個角. (提示:有公共端點的兩條重合的射線所組成的角是0°)
(1)當動點P落在第①部分時,有∠APB=∠PAC+∠PBD,請說明理由;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?若不成立,試寫出∠PAC、∠APB、∠PBD三個角的等量關系(無需說明理由);
(3)當動點P在第③部分時,探究∠PAC、∠APB、∠PBD之間的關系,寫出你發(fā)現(xiàn)的一個結論并加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,直線AC∥BD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分
規(guī)定:線上各點不屬于任何部分,點動點P若在某個部分時,連接PA、PB、構成∠PAC,∠APB、∠PBD三個角.(提示:有公共端點的兩條重合的射線組成的角是0°角)

(1)當動點P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立,若不成立,請寫出∠APB、∠PAC、∠PBD之間存在的一個關系式.

查看答案和解析>>

同步練習冊答案