【題目】某公路上一路段的道路維修工程準(zhǔn)備對外招標(biāo),現(xiàn)有甲、乙兩個工程隊競標(biāo),競標(biāo)資料上顯示:甲工程隊單獨完成此項工程需要10天,乙工程隊單獨完成此項工程需要15天,但甲工程隊每天的工程費用比乙工程隊多300元;甲、乙兩隊合作共需要10200元.工程指揮隊決定從甲、乙兩個工程隊中選一隊單獨完成,若從節(jié)省資金的角度考慮,應(yīng)選哪個工程隊?

【答案】從節(jié)省資金的角度考慮,應(yīng)選甲工程隊

【解析】

設(shè)甲工程隊每天的工程費用為x元,則乙工程隊每天的工程費用為(x-300)元,根據(jù)甲、乙兩隊合作共需要10200元列出方程并解答.

設(shè)甲工程隊每天的工程費用為x元,則乙工程隊每天的工程費用為(x﹣300)元,

依題意得:1÷(+)=6(天).

6×[x+(x﹣3)]=10200,

解得x=1000,

則甲隊完成需要的費用:1000×10=10000(元)

乙隊完成需要的費用:(1000﹣300)×15=10500(元)

因為10000<10500,

所以從節(jié)省資金的角度考慮,應(yīng)選甲工程隊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點P的坐標(biāo)為(a,b),點P的“變換點”P`的坐標(biāo)定義如下:當(dāng)時,P`點坐標(biāo)為(a,-b);當(dāng)時,P`點坐標(biāo)為(b,-a)。線段l上所有點按上述“變換點”組成一個新的圖形,若直線與組成的新的圖形有兩個交點,則k的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個安裝有進出水管的30升容器,水管每單位時間內(nèi)進出的水量是一定的.設(shè)從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,得到水量y(升)與時間x(分鐘)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息給出下列說法:①每分鐘進水5升;②當(dāng)4≤x≤12時,容器中的水量在減少;③若12分鐘后只放水,不進水,還要8分鐘可以把水放完;④若從一開始進出水管同時打開,則需要24分鐘可以將容器灌滿.其中正確的有________(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結(jié)EG、EF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某船以每小時36海里的速度向正東方向航行,在點A測得某島C在北偏東60°方向上,航行半小時后到達點B測得該島在北偏東30°方向上,已知該島周圍16海里內(nèi)有暗礁.

(1)說明點B是否在暗礁區(qū)域內(nèi);
(2)若繼續(xù)向東航行有無觸礁的危險?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列一元一次方程解應(yīng)用題:

某管道由甲、乙兩工程隊單獨施工分別需要30天、20.

(1)如果兩隊從管道兩端同時施工,需要多少天完工?

(2)又知甲隊單獨施工每天需付200元施工費,乙隊單獨施工每天需付280元施工費,那么是由甲隊單獨施工,還是由乙隊單獨施工,還是由兩隊同時施工?請你按照少花錢多辦事的原則,設(shè)計一個方案,并通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=x2+bx+c的圖象與x軸交于兩點,與y軸的正半軸交于一點,且對稱軸為x=1,則下列說法正確的是(
A.二次函數(shù)的圖象與x軸的交點位于y軸的兩側(cè)
B.二次函數(shù)的圖象與x軸的交點位于y軸的右側(cè)
C.其中二次函數(shù)中的c>1
D.二次函數(shù)的圖象與x軸的一個交于位于x=2的右側(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題

(1)如圖1,在AB直線一側(cè)C、D兩點,在AB上找一點P,使C、D、P三點組成的三角形的周長最短,找出此點并說明理由.
(2)如圖2,在∠AOB內(nèi)部有一點P,是否在OA、OB上分別存在點E、F,使得E、F、P三點組成的三角形的周長最短,找出E、F兩點,并說明理由.
(3)如圖3,在∠AOB內(nèi)部有兩點M、N,是否在OA、OB上分別存在點E、F,使得E、F、M、N,四點組成的四邊形的周長最短,找出E、F兩點,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國很多城市水資源缺乏,為了加強居民的節(jié)水意識,某市制定了每月用水4噸以內(nèi)(包括4噸)和用水4噸以上兩種收費標(biāo)準(zhǔn)(收費標(biāo)準(zhǔn):每噸水的價格),某用戶每月應(yīng)交水費y(元)是用水量x(噸)的函數(shù),其函數(shù)圖象如圖所示.

1)分別求出當(dāng)0≤x≤4、x4時函數(shù)的解析式;

2)當(dāng)0≤x≤4、x4時,每噸水的價格分別是多少?

3)若某用戶該月交水費12.8元,求該戶用了多少噸水.

查看答案和解析>>

同步練習(xí)冊答案