【題目】如圖,一次函數(shù)y=-x+1的圖象與x軸、y軸分別交于點A、B,以線段AB為邊在第一象限作等邊△ABC.

(1)若點C在反比例函數(shù)y=的圖象上,求該反比例函數(shù)的解析式;

(2)點P(2,m)在第一象限,過點P作x軸的垂線,垂足為D,當(dāng)△PAD與△OAB相似時,P點是否在(1)中反比例函數(shù)圖象上?如果在,求出P點坐標(biāo);如果不在,請加以說明.

【答案】 ; P點坐標(biāo)為

【解析】試題分析:(1)由直線解析式可求得AB坐標(biāo),在RtAOB中,利用三角函數(shù)定義可求得BAO=30°,且可求得AB的長,從而可求得CAOA,則可求得C點坐標(biāo),利用待定系數(shù)法可求得反比例函數(shù)解析式;

(2)分PADABOPADBAO兩種情況,分別利用相似三角形的性質(zhì)可求得m的值,可求得P點坐標(biāo),代入反比例函數(shù)解析式進行驗證即可.

試題解析:解:(1)在中,令y=0可解得x=,令x=0可得y=1,∴A,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,∵ABC是等邊三角形,∴∠BAC=60°,∴∠CAO=90°,在RtBOA中,由勾股定理可得AB=2,∴AC=2,∴C,2),∵C在反比例函數(shù)的圖象上,k=2×=,∴反比例函數(shù)解析式為;

(2)∵Pm)在第一象限,AD=ODOA==PD=m,當(dāng)ADPAOB時,則有,即,解得m=1,此時P點坐標(biāo)為(,1);

當(dāng)PDAAOB時,則有,即,解得m=3,此時P點坐標(biāo)為(,3);

P,3)代入可得3≠,∴P,3)不在反比例函數(shù)圖象上,把P,1)代入反比例函數(shù)解析式得1=,∴P,1)在反比例函數(shù)圖象上;

綜上可知P點坐標(biāo)為(,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,接著關(guān)閉進水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進水量和出水量保持不變,容器內(nèi)水量(單位:)與時間(單位:)的部分函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:

1)求出水管的出水速度;

2)求時容器內(nèi)的水量;

3)從關(guān)閉進水管起多少分鐘時,該容器內(nèi)的水恰好放完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明想要做以下的一個探究:小明準(zhǔn)備了一個長方體的無蓋容器和A,B兩種型號的鋼球若干. 先往容器里加入一定量的水,如圖,水高度為30mm,水足以淹沒所有的鋼球.探究一:小明做了兩次實驗,先放入3A型號鋼球,水面的高度漲到36mm;把3A型號鋼球撈出,再放入2B型號鋼球,水面的高度恰好也漲到36mm.由此可知A型號與B型號鋼球的體積比為____________;

探究二:小明把之前的鋼球全部撈出,然后再放入A型號與B型號鋼球共10個后,水面高度漲到57mm,問放入水中的A型號與B型號鋼球各幾個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年1月25日,濟南至成都方向的高鐵線路正式開通,高鐵平均時速為普快平均時速的4倍,從濟南到成都的高鐵運行時間比普快列車減少了26小時.已知濟南到成都的火車行車?yán)锍碳s為2288千米,求高鐵列車的平均時速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點C在直線 AB 上, ACa , BCb ,且 ab ,點 M是線段 AB 的中點,則線段 MC的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“十年樹木,百年樹人”,教師的素養(yǎng)關(guān)系到國家的未來.我市某區(qū)招聘音樂教師采用筆試、專業(yè)技能測試、說課三種形式進行選拔,這三項的成績滿分均為100分,并按235的比例折合納入總分,最后,按照成績的排序從高到低依次錄。搮^(qū)要招聘2名音樂教師,通過筆試、專業(yè)技能測試篩選出前6名選手進入說課環(huán)節(jié),這6名選手的各項成績見表:

序號

1

2

3

4

5

6

筆試成績

66

90

86

64

65

84

專業(yè)技能測試成績

95

92

93

80

88

92

說課成績

85

78

86

88

94

85

1)求出說課成績的中位數(shù)、眾數(shù);

2)已知序號為1,23,4號選手的成績分別為84.2分,84.6分,88.1分,80.8分,請你判斷這六位選手中序號是多少的選手將被錄用?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點B1,以O(shè)B1為邊長作等邊三角形A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點A2017的橫坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A0,1),B5,0)將線段AB向上平移到DC,如圖1,CDy軸于點E,D點坐標(biāo)為(﹣2a

1)直接寫出點C坐標(biāo)(C的縱坐標(biāo)用a表示);

2)若四邊形ABCD的面積為18,求a的值;

3)如圖2,FAE延長線上一點,HOB延長線上一點,EP平分∠CEF,BP平分∠ABH,求∠EPB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)在ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且ADMN于點D,BEMN于點E.求證:

1ADC≌△CEB;

2DE=AD+BE

3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(2)的位置時,DE、ADBE又怎樣的關(guān)系?并加以證明.

查看答案和解析>>

同步練習(xí)冊答案