【題目】如圖,在平面直角坐標(biāo)系xOy中,A(4,0),B(0,3),C(4,3),IABC的內(nèi)心,將ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對應(yīng)點(diǎn)I'的坐標(biāo)為( 。

A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)

【答案】A

【解析】直接利用直角三角形的性質(zhì)得出其內(nèi)切圓半徑,進(jìn)而得出I點(diǎn)坐標(biāo),再利用旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點(diǎn)坐標(biāo).

過點(diǎn)作IFAC于點(diǎn)F,IEOA于點(diǎn)E,

A(4,0),B(0,3),C(4,3),

BC=4,AC=3,

AB=5,

IABC的內(nèi)心,

IABC各邊距離相等,等于其內(nèi)切圓的半徑,

IF=1,故IBC的距離也為1,

AE=1,

IE=3﹣1=2,

OE=4﹣1=3,

I(3,2),

∵△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,

I的對應(yīng)點(diǎn)I'的坐標(biāo)為:(﹣2,3),

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

已知:如圖1,等邊A1A2A3內(nèi)接于⊙O,點(diǎn)P上的任意一點(diǎn),連接PA1,PA2,PA3,可證:PA1+PA2=PA3,從而得到:是定值.

(1)以下是小紅的一種證明方法,請?jiān)诜娇騼?nèi)將證明過程補(bǔ)充完整;

證明:如圖1,作∠PA1M=60°,A1MA2P的延長線于點(diǎn)M.

∵△A1A2A3是等邊三角形,

∴∠A3A1A2=60°,

∴∠A3A1P=A2A1M

A3A1=A2A1,A1A3P=A1A2P,

∴△A1A3P≌△A1A2M

PA3=MA2=PA2+PM=PA2+PA1

,是定值.

(2)延伸:如圖2,把(1)中條件等邊A1A2A3改為正方形A1A2A3A4”,其余條件不變,請問:還是定值嗎?為什么?

(3)拓展:如圖3,把(1)中條件等邊A1A2A3改為正五邊形A1A2A3A4A5”,其余條件不變,則=  (只寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五邊形 ABCDE中,ABACADAE,且AB//ED,∠EAB120°,則∠DCB的度數(shù)是( )

A. 120°B. 130°C. 140°D. 150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高.孝感市槐蔭公司根據(jù)市場需求代理、兩種型號的凈水器,每臺型凈水器比每臺型凈水器進(jìn)價(jià)多200元,用5萬元購進(jìn)型凈水器與用4.5萬元購進(jìn)型凈水器的數(shù)量相等.

(1)求每臺型、型凈水器的進(jìn)價(jià)各是多少元;

(2)槐蔭公司計(jì)劃購進(jìn)兩種型號的凈水器共50臺進(jìn)行試銷,其中型凈水器為臺,購買資金不超過9.8萬元.試銷時(shí)型凈水器每臺售價(jià)2500元,型凈水器每臺售價(jià)2180元.槐蔭公司決定從銷售型凈水器的利潤中按每臺捐獻(xiàn)元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺凈水器并捐獻(xiàn)扶貧資金后獲得的利潤為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)和點(diǎn)的坐標(biāo)分別為,,將繞點(diǎn)按順時(shí)針分別旋轉(zhuǎn),得到,拋物線經(jīng)過點(diǎn),;拋物線經(jīng)過點(diǎn),,.

(1)點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________;拋物線的解析式為________,拋物線的解析式為________;

(2)如果點(diǎn)是直線上方拋物線上的一個(gè)動點(diǎn).

①若,求點(diǎn)的坐標(biāo);

②如圖2,過點(diǎn)軸的垂線交直線于點(diǎn),交拋物線于點(diǎn),記,求的函數(shù)關(guān)系式.當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點(diǎn)E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“十一”期間,小華一家人開車到距家100千米的景點(diǎn)旅游,出發(fā)前,汽車油箱內(nèi)儲油35升,當(dāng)行駛80千米時(shí),發(fā)現(xiàn)油箱余油量為25升(假設(shè)行駛過程中汽要車的耗油量是均勻的)

1)求該車平均每千米的耗油量;

2)寫出剩余油量Q(升)與行駛路程x(千米)之間的關(guān)系式;

3)當(dāng)油箱中剩余油量低于3升時(shí),汽車將自動報(bào)警,如果往返途中不加油,他們能否在汽車報(bào)警前回到家?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.

已知是比例三角形,,請直接寫出所有滿足條件的AC的長;

如圖1,在四邊形ABCD中,,對角線BD平分求證:是比例三角形.

如圖2,在的條件下,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC中,已知ACBC2, AB4,作∠ACB的外角平分線CF,點(diǎn)E從點(diǎn)B沿著射線BA以每秒2個(gè)單位的速度運(yùn)動,過點(diǎn)EBC的平行線交CF于點(diǎn)F

1)求證:四邊形BCFE是平行四邊形;

2)當(dāng)點(diǎn)E是邊AB的中點(diǎn)時(shí),連接AF,試判斷四邊形AECF的形狀,并說明理由;

3)設(shè)運(yùn)動時(shí)間為t秒,是否存在t的值,使得以EFC的其中兩邊為鄰邊所構(gòu)造的平行四邊形恰好是菱形?不存在的,試說明理由;存在的,請直接寫出t的值.答:t________

查看答案和解析>>

同步練習(xí)冊答案