【題目】已知四邊形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN繞B點(diǎn)旋轉(zhuǎn),它的兩邊分別交AD,DC(或它們的延長線)于E,F(xiàn). 當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE=CF時(如圖1),易證AE+CF=EF;
當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE≠CF時,在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,線段AE,CF,EF又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
【答案】解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF, 在△ABE和△CBF中,
,
∴△ABE≌△CBF(SAS);
∴∠ABE=∠CBF,BE=BF;
∵∠ABC=120°,∠MBN=60°,
∴∠ABE=∠CBF=30°,
∴AE= BE,CF= BF;
∵∠MBN=60°,BE=BF,
∴△BEF為等邊三角形;
∴AE+CF= BE+ BF=BE=EF;
圖2成立,圖3不成立.
證明圖2.
延長DC至點(diǎn)K,使CK=AE,連接BK,
在△BAE和△BCK中,
則△BAE≌△BCK,
∴BE=BK,∠ABE=∠KBC,
∵∠FBE=60°,∠ABC=120°,
∴∠FBC+∠ABE=60°,
∴∠FBC+∠KBC=60°,
∴∠KBF=∠FBE=60°,
在△KBF和△EBF中,
∴△KBF≌△EBF,
∴KF=EF,
∴KC+CF=EF,
即AE+CF=EF.
圖3不成立,
AE、CF、EF的關(guān)系是AE﹣CF=EF.
【解析】根據(jù)已知可以利用SAS證明△ABE≌△CBF,從而得出對應(yīng)角相等,對應(yīng)邊相等,從而得出∠ABE=∠CBF=30°,△BEF為等邊三角形,利用等邊三角形的性質(zhì)及邊與邊之間的關(guān)系,即可推出AE+CF=EF. 同理圖2可證明是成立的,圖3不成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P在第二象限,并且到x軸的距離為1,到y(tǒng)軸的距離為2.則點(diǎn)P的坐標(biāo)是( 。
A. (1、2) B. (﹣1,2) C. (2,1) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形具有而菱形不具有的性質(zhì)是( 。
A. 對角線互相平分 B. 對角線相等
C. 對角線平分一組對角 D. 對角線互相垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABE和△ADC是△ABC分別沿著AB,AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為( )
A.80°
B.100°
C.60°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽像出的幾何圖形,B,C,E在同一條直線上,連結(jié)DC.
(1)請找出圖2中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的宇母);
(2)證明:DC⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形中不能單獨(dú)進(jìn)行鑲嵌的是( 。
A. 等腰三角形 B. 平行四邊形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用棋子擺成的“H”字,第一個“H”有7個棋子
(1)擺成第二個“H”字需要幾個棋子?第三個“H”字需要幾個棋子?
(2)按這樣的規(guī)律擺下去,擺成第10個“H”字需要幾個棋子,第n個呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具店購進(jìn)一種兒童玩具,計劃每個售價36元,能盈利80%,在銷售中出現(xiàn)了滯銷,于是先后兩次降價,售價降為25元.
(1)求這種玩具的進(jìn)價;
(2)求平均每次降價的百分率(精確到0.1%).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com