【題目】如圖,直線l1 :y=-3x+3x軸交于點D,直線l2經(jīng)過A(4,0)、B(3,)兩點,直線l1 與直線l2交于點C.

(1)求直線l2的解析式和點C的坐標;

(2) y軸上是否存在一點P,使得四邊形PDBC的周長最小?若存在,請求出點P的坐標,若不存在,請說明理由.

【答案】(1) y=x-6,點C(2,-3);(2)存在,點P的坐標為(0,-1).

【解析】

1)將點A(4,0)、B(3,-)代入y=kx+b中,用待定系數(shù)法即可求出直線l2的解析式;聯(lián)立兩直線的解析式即可求出點C的坐標;

2)作點D關(guān)于y軸的對稱點D1,連結(jié)C D1,交y軸于一點,則該點即為要求的點P,用待定系數(shù)法求出CD1的解析式,然后可求出點P的坐標.

(1) 設(shè)直線l2的解析式為y=kx+b(k0),將點A(4,0)、B(3,-)代入y=kx+b中,

,

解得 ,

所以直線l2的解析式為y=x-6.

聯(lián)立方程組,

,

解得,

∴點C(2,-3) ;

(2)存在,作點D關(guān)于y軸的對稱點D1,連結(jié)C D1,交y軸于一點,則該點即為要求的點P

y=-3x+3中,令y=0,則x=1,即點D(1,0),點D關(guān)于y軸的對稱點D1(-1,0),

∴點C(,0).

設(shè)直線C D1的解析式為y=kx+b(k0),將點C(2,-3)、D1(-1,0)代入,得:

得:,解得

∴直線BC的解析式為y=-x-1 ,令x=0,則y=-1,

則點P的坐標為(0,-1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N20km.一輪船以36km/h的速度航行,上午1000A處測得燈塔C位于輪船的北偏西30°方向,上午1040B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航向,何時到達海岸線?

(2)若輪船不改變航向,該輪船能否停靠在碼頭?請說明理由(參考數(shù)據(jù): ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B2cm/s的速度移動,點Q沿DA邊從點D開始向點A1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤6),那么:

(1)當t為何值時,△QAP是等腰直角三角形?

(2)當t為何值時,以點Q、A、P為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,E,F是對角線BD上的兩點且BE=DF,聯(lián)結(jié)AECF

求證:AE=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,點D、E分別在邊AB、AC上,點FCD上.

1)若∠AED=ACB, DEF= B,求證:EF//AB;

2)若D、E、F分別是AB、ACCD的中點,連接BF,若四邊形 BDEF的面積為6,試求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖⊙O的半徑為1cm,弦AB、CD的長度分別為,則弦AC、BD所夾的銳角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于MN兩點,則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,△ABC三個頂點分別是A2,0)、B0,4)、C-3,0),把△ABC沿x軸向右平移4個單位,得到△A1B1C1

1)在圖中以黑點為原點建立平面直角坐標系,畫出△ABC△A1B1C1;

2)寫出A1、B1、C1各點的坐標;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,,將如圖擺放,使得的兩條邊分別經(jīng)過點和點

1)當將如圖1擺放時,則_________度.

2)當將如圖2擺放時,請求出的度數(shù),并說明理由.

3)能否將擺放到某個位置時,使得、同時平分?直接寫出結(jié)論_______(填不能

查看答案和解析>>

同步練習(xí)冊答案