【題目】閱讀下列材料,并回答問(wèn)題.事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個(gè)結(jié)論就是著名的勾股定理.請(qǐng)利用這個(gè)結(jié)論,完成下面活動(dòng):
一個(gè)直角三角形的兩條直角邊分別為,那么這個(gè)直角三角形斜邊長(zhǎng)為____;
如圖①,于,求的長(zhǎng)度;
如圖②,點(diǎn)在數(shù)軸上表示的數(shù)是____請(qǐng)用類(lèi)似的方法在圖2數(shù)軸上畫(huà)出表示數(shù)的點(diǎn)(保留痕跡).
【答案】;;.數(shù)軸上畫(huà)出表示數(shù)的B點(diǎn).見(jiàn)解析.
【解析】
(1) 根據(jù)勾股定理計(jì)算;
(2) 根據(jù)勾股定理求出AD,根據(jù)題意求出BD;
(3) 根據(jù)勾股定理計(jì)算即可.
∵這一個(gè)直角三角形的兩條直角邊分別為
∴這個(gè)直角三角形斜邊長(zhǎng)為
故答案為:
∵
∴
在中,,則由勾股定理得,
在和中
∴
∴
(3)點(diǎn)A在數(shù)軸上表示的數(shù)是: ,
由勾股定理得,
以O為圓心、OC為半徑作弧交x軸于B,則點(diǎn)B即為所求,
故答案為: , B點(diǎn)為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°.
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請(qǐng)標(biāo)明字母)
①作線(xiàn)段AC的垂直平分線(xiàn)l,交AC于點(diǎn)O;
②連接BO并延長(zhǎng),在BO的延長(zhǎng)線(xiàn)上截取OD,使得OD=OB;
③連接DA、DC.
(2)判斷四邊形ABCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(diǎn)(在的左側(cè)),且點(diǎn)坐標(biāo)為.平行于軸的直線(xiàn)過(guò)點(diǎn).
求一次函數(shù)與二次函數(shù)的解析式;
判斷以線(xiàn)段為直徑的圓與直線(xiàn)的位置關(guān)系,并給出證明;
把二次函數(shù)的圖象向右平移個(gè)單位,再向下平移個(gè)單位,二次函數(shù)的圖象與軸交于,兩點(diǎn),一次函數(shù)圖象交軸于點(diǎn).當(dāng)為何值時(shí),過(guò),,三點(diǎn)的圓的面積最小?最小面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是菱形的對(duì)角線(xiàn),分別是邊的中點(diǎn),連接,,則下列結(jié)論錯(cuò)誤的是( )
A. B. C. 四邊形是菱形D. 四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點(diǎn)O,點(diǎn)E在A(yíng)O上,且OE=OC.
(1)求證:∠1=∠2;
(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)AB:y=kx+b經(jīng)過(guò)點(diǎn)B(1,4)、A(5,0)兩點(diǎn),且與直線(xiàn)y=2x-4交于點(diǎn)C.
(1)求直線(xiàn)AB的解析式并求出點(diǎn)C的坐標(biāo);
(2)求出直線(xiàn)y=kx+b、直線(xiàn)y=2x-4及與y軸所圍成的三角形面積;
(3)現(xiàn)有一點(diǎn)P在直線(xiàn)AB上,過(guò)點(diǎn)P作PQ∥y軸交直線(xiàn)y=2x-4于點(diǎn)Q,若線(xiàn)段PQ的長(zhǎng)為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(材料閱讀)我們?cè)鉀Q過(guò)課本中的這樣一道題目:
如圖,四邊形是正方形,為邊上一點(diǎn),延長(zhǎng)至,使,連接.……
提煉1:繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到;
提煉2:;
提煉3:旋轉(zhuǎn)、平移、軸對(duì)稱(chēng)是圖形全等變換的三種方式.
(問(wèn)題解決)(1)如圖,四邊形是正方形,為邊上一點(diǎn),連接,將沿折疊,點(diǎn)落在處,交于點(diǎn),連接.可得: °;三者間的數(shù)量關(guān)系是
(2)如圖,四邊形的面積為8,,,連接.求的長(zhǎng)度.
(3)如圖,在中,,,點(diǎn)在邊上,.寫(xiě)出間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn) ,與直線(xiàn)相交于點(diǎn) ,
(1)求直線(xiàn) 的函數(shù)表達(dá)式;
(2)求 的面積;
(3)在 軸上是否存在一點(diǎn) ,使是等腰三角形.若不存在,請(qǐng)說(shuō)明理由;若存在,請(qǐng)直接寫(xiě)出點(diǎn) 的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長(zhǎng)為4 cm,面積為12 cm2,腰AB的垂直平分線(xiàn)EF交AB于點(diǎn)E,交AC于點(diǎn)F,若D為BC邊上的中點(diǎn),M為線(xiàn)段EF上一點(diǎn),則△BDM的周長(zhǎng)最小值為( )
A. 5 cm B. 6 cm C. 8 cm D. 10 cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com