已知拋物線C1的頂點(diǎn)為P(1,0),且過(guò)點(diǎn)(0,).將拋物線C1向下平移h個(gè)單位(h>0)得到拋物線C2.一條平行于x軸的直線與兩條拋物線交于A、B、C、D四點(diǎn)(如圖),且點(diǎn)A、C關(guān)于y軸對(duì)稱,直線AB與x軸的距離是m2(m>0).
(1)求拋物線C1的解析式的一般形式;
(2)當(dāng)m=2時(shí),求h的值;
(3)若拋物線C1的對(duì)稱軸與直線AB交于點(diǎn)E,與拋物線C2交于點(diǎn)F.求證:tan∠EDF﹣tan∠ECP=.
解:(1)設(shè)拋物線C1的頂點(diǎn)式形式(a≠0),
∵拋物線過(guò)點(diǎn)(0,),∴,解得a=。
∴拋物線C1的解析式為,一般形式為。
(2)當(dāng)m=2時(shí),m2=4,
∵BC∥x軸,∴點(diǎn)B、C的縱坐標(biāo)為4。
∴,解得x1=5,x2=﹣3。
∴點(diǎn)B(﹣3,4),C(5,4)。
∵點(diǎn)A、C關(guān)于y軸對(duì)稱,∴點(diǎn)A的坐標(biāo)為(﹣5,4)。
設(shè)拋物線C2的解析式為,
則,解得h=5。
(3)證明:∵直線AB與x軸的距離是m2,∴點(diǎn)B、C的縱坐標(biāo)為m2。
∴,解得x1=1+2m,x2=1﹣2m。
∴點(diǎn)C的坐標(biāo)為(1+2m,m2)。
又∵拋物線C1的對(duì)稱軸為直線x=1,∴CE=1+2m﹣1=2m。
∵點(diǎn)A、C關(guān)于y軸對(duì)稱,∴點(diǎn)A的坐標(biāo)為(﹣1﹣2m,m2)。
∴。
設(shè)拋物線C2的解析式為,
則,解得h=2m+1。
∴EF=h+m2=m2+2m+1。
∴。
【解析】
試題分析:(1)設(shè)拋物線C1的頂點(diǎn)式形式(a≠0),然后把點(diǎn)(0,)代入求出a的值,再化為一般形式即可。
(2)先根據(jù)m的值求出直線AB與x軸的距離,從而得到點(diǎn)B、C的縱坐標(biāo),然后利用拋物線解析式求出點(diǎn)C的橫坐標(biāo),再根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同求出點(diǎn)A的坐標(biāo),然后根據(jù)平移的性質(zhì)設(shè)出拋物線C2的解析式,再把點(diǎn)A的坐標(biāo)代入求出h的值即可。
(3)先把直線AB與x軸的距離是m2代入拋物線C1的解析式求出C的坐標(biāo),從而求出CE,再表示出點(diǎn)A的坐標(biāo),根據(jù)拋物線的對(duì)稱性表示出ED,根據(jù)平移的性質(zhì)設(shè)出拋物線C2的解析式,把點(diǎn)A的坐標(biāo)代入求出h的值,然后表示出EF,最后根據(jù)銳角的正切值等于對(duì)邊比鄰邊列式整理即可得證。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
4 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年湖南省株洲市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com