【題目】如圖,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點,且AB=CD,下列結(jié)論:①EG⊥FH;②四邊形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】
根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半與AB=CD可得四邊形EFGH是菱形;
然后根據(jù)菱形的對角線互相垂直平分,并且平分每一組對角的性質(zhì)對各小題進行判斷,從而找出正確的個數(shù)即可得到答案.
∵E、F、G、H分別是BD、BC、AC、AD的中點,
∴EF=CD,F(xiàn)G=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四邊形EFGH是菱形,
∴①EG⊥FH,正確;
②四邊形EFGH是菱形,正確;
③HF平分∠EHG,正確;
④當AD∥BC,如圖所示:E,G分別為BD,AC中點,
∴連接CD,延長EG到CD上一點N,
如下圖所示:
∴EN=BC,GN=AD,
∴EG= (BC-AD),只有AD∥BC時才可以成立,而本題AD與BC很顯然不平行,故本小題錯誤;
故①②③對.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(m-1)x-2m2+m=0(m為實數(shù))有兩個實數(shù)根x1、x2.
(1)當m為何值時,x1=x2.
(2)若x12+x22,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,有以下兩種圍法.
(1)如圖1,設花圃的寬AB為x米,面積為y米2,求y與x之間的含函數(shù)表達式,并確定x的取值范圍;
(2)如圖2,為了方便出入,在建造籬笆花圃時,在BC上用其他材料造了寬為1米的兩個小門,設花圃的寬AB為a米,面積為S米2,求S與a之間的函數(shù)表達式及S的最大值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形中,,
(1)如圖(a)所示,、分別是和的角平分線,判斷與的位置關系,并證明.
(2)如圖(b)所示,、分別是和的角平分線,直接寫出與的位置關系.
(3)如圖(c)所示,、分別是和的角平分線,判斷與的位置關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩張完全相同的矩形紙片、按如圖方式放置,為重合的對角線.重疊部分為四邊形,
試判斷四邊形為何種特殊的四邊形,并說明理由;
若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AB=8cm,BC=16 cm.點P從點A出發(fā)沿AB向點B以2 cm/s的速度運動,點Q從點B出發(fā)沿BC向點C以4 cm/s的速度運動.如果點P,Q分別從點A,B同時出發(fā),則_____________秒鐘后△PBQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,是的平分線,點在上,,且點到的距離為,過點作,,垂足分別為,,易得到結(jié)論: .
(1)把圖中的繞點旋轉(zhuǎn),當與不垂直時(如圖),上述結(jié)論是否成立?并說明理由.
(2)把圖中的繞點旋轉(zhuǎn),當與的反向延長線相交于點時:
①請在圖中畫出圖形;
②上述結(jié)論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段,之間的的數(shù)量關系,不需證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com