【題目】如圖,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點,且AB=CD,下列結(jié)論:①EG⊥FH;②四邊形EFGH是菱形;HF平分∠EHG;④EG=(BC﹣AD),其中正確的個數(shù)是( 。

A. 1個 B. 2個 C. 3個 D. 4個

【答案】C

【解析】

根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半與AB=CD可得四邊形EFGH是菱形;

然后根據(jù)菱形的對角線互相垂直平分,并且平分每一組對角的性質(zhì)對各小題進行判斷,從而找出正確的個數(shù)即可得到答案.

∵E、F、G、H分別是BD、BC、AC、AD的中點,

∴EF=CD,F(xiàn)G=AB,GH=CD,HE=AB,

∵AB=CD,

∴EF=FG=GH=HE,

∴四邊形EFGH是菱形,

∴①EG⊥FH,正確;

②四邊形EFGH是菱形,正確;

③HF平分∠EHG,正確;

④當AD∥BC,如圖所示:E,G分別為BD,AC中點,

∴連接CD,延長EG到CD上一點N,

如下圖所示:

∴EN=BC,GN=AD,

∴EG= (BC-AD),只有AD∥BC時才可以成立,而本題AD與BC很顯然不平行,故本小題錯誤;

故①②③對.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(m-1)x-2m2+m=0(m為實數(shù))有兩個實數(shù)根x1、x2

(1)當m為何值時,x1=x2.

(2)若x12+x22,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,有以下兩種圍法.

(1)如圖1,設花圃的寬AB為x米,面積為y米2,求y與x之間的含函數(shù)表達式,并確定x的取值范圍;

(2)如圖2,為了方便出入,在建造籬笆花圃時,在BC上用其他材料造了寬為1米的兩個小門,設花圃的寬AB為a米,面積為S米2,求S與a之間的函數(shù)表達式及S的最大值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形中,,

1)如圖(a)所示,、分別是的角平分線,判斷的位置關系,并證明.

2)如圖(b)所示,、分別是的角平分線,直接寫出的位置關系.

3)如圖(c)所示,、分別是的角平分線,判斷的位置關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD;

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩張完全相同的矩形紙片、按如圖方式放置,為重合的對角線.重疊部分為四邊形,

試判斷四邊形為何種特殊的四邊形,并說明理由;

,,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AB8cm,BC16 cm.點P從點A出發(fā)沿AB向點B2 cm/s的速度運動,點Q從點B出發(fā)沿BC向點C4 cm/s的速度運動.如果點P,Q分別從點A,B同時出發(fā),則_____________秒鐘后△PBQ與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖的平分線,點上,,且點的距離為,過點,,垂足分別為,,易得到結(jié)論:

1)把圖中的繞點旋轉(zhuǎn),當不垂直時(如圖),上述結(jié)論是否成立?并說明理由.

2)把圖中的繞點旋轉(zhuǎn),當的反向延長線相交于點時:

①請在圖中畫出圖形;

②上述結(jié)論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段,之間的的數(shù)量關系,不需證明.

查看答案和解析>>

同步練習冊答案