【題目】用直尺和圓規(guī)作一個(gè)角等于已知角,如圖,能得出的依據(jù)是( 。

A. SAS B. SSS C. AAS D. ASA

【答案】B

【解析】

通過分析作圖的步驟發(fā)現(xiàn)△OCD與△OCD′的三條邊分別對(duì)應(yīng)相等,于是利用邊邊邊,判定△OCD≌△OCD′,根據(jù)全等三角形對(duì)應(yīng)角相等得出∠AOB′=∠AOB

作圖的步驟

O為圓心,任意長(zhǎng)為半徑畫弧,分別交OA、OB于點(diǎn)C、D;

作射線OB′,O′為圓心,OC長(zhǎng)為半徑畫弧,OB′于點(diǎn)C′;

C′為圓心,CD長(zhǎng)為半徑畫弧,交前弧于點(diǎn)D′;

過點(diǎn)D′作射線OA′.

所以∠AOB′就是與∠AOB相等的角

在△OCD′與△OCD中,∵,∴△OCD′≌△OCD(SSS),∴∠AOB′=∠AOB,∴運(yùn)用的判定方法是邊邊邊

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計(jì)劃在七年級(jí)學(xué)生中開設(shè)4個(gè)信息技術(shù)應(yīng)用興趣班,分別為“無人機(jī)”班,“3D打印”班,“網(wǎng)頁(yè)設(shè)計(jì)”班,“電腦繪畫”班,規(guī)定每人最多參加一個(gè)班,自愿報(bào)名.根據(jù)報(bào)名情況繪制了下面統(tǒng)計(jì)圖表,
請(qǐng)回答下列問題:
七年級(jí)興趣班報(bào)名情況統(tǒng)計(jì)表.

興趣班名稱

頻率

“無人機(jī)”

a

“3D打印”

0.05

“網(wǎng)頁(yè)設(shè)計(jì)”

0.25

“電腦繪畫”

0.40


(1)報(bào)名參加興趣班的總?cè)藬?shù)為人;統(tǒng)計(jì)表中的a=;
(2)將統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了均衡班級(jí)人數(shù),在“電腦繪畫”班中至少動(dòng)員幾人到“3D打印”班,才能使“電腦繪畫”班人數(shù)不超過“3D打印”班人數(shù)的2倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格MNPQ中,每個(gè)小方格的邊長(zhǎng)都相等,正方形ABCD的頂點(diǎn)在正方形MNPQ4條邊的小方格頂點(diǎn)上.

(1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個(gè)小方格的邊長(zhǎng)為1,求:

①△ABQBCM,CDNADP的面積;

②正方形ABCD的面積.

(2)設(shè)MBaBQb,利用這個(gè)圖形中的直角三角形和正方形的面積關(guān)系,你能驗(yàn)證已學(xué)過的哪一個(gè)數(shù)學(xué)公式或定理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)解應(yīng)用題

《九章算術(shù)》是中國(guó)古代第一部數(shù)學(xué)專著,也是世界上最早的印刷本數(shù)學(xué)書它的出現(xiàn)標(biāo)志著中國(guó)古代數(shù)學(xué)體系的形成.《九章算術(shù)》早在隋唐時(shí)期即已傳入朝鮮、日本并被譯成日、俄、德、法等多種文字版本.書中有如下問題:今有共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價(jià)各幾何?

大意是:有幾個(gè)人一起去買一件物品,如果每人出8元,則多了3元;如果每人出7元,則少了4元錢,問有多少人?該物品價(jià)值多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,BC= .將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至矩形AB′C′D′,使得點(diǎn)B′恰好落在對(duì)角線BD上,連接DD′,則DD′的長(zhǎng)度為(
A.
B.
C. +1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是4,點(diǎn)EBC的中點(diǎn),連接DE,DFDEBA的延長(zhǎng)線于點(diǎn)F.連接EF、AC,DE、EF分別與C交于點(diǎn)PQ,則PQ_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)和底面各邊長(zhǎng)均為2,其主視圖是邊長(zhǎng)為2的正方形,則此直三棱柱左視圖的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.

(1)求證:△BCE≌△DCF;

(2)求證:AB+AD=2AE.

查看答案和解析>>

同步練習(xí)冊(cè)答案