【題目】已知:拋物線與軸分別交于點A(-3,0),B(m,0).將y1向右平移4個單位得到y(tǒng)2.
(1)求b的值;
(2)求拋物線y2的表達(dá)式;
(3)拋物線y2與軸交于點D,與軸交于點E、F(點E在點F的左側(cè)),記拋物線在D、F之間的部分為圖象G(包含D、F兩點),若直線與圖象G有一個公共點,請結(jié)合函數(shù)圖象,求直線與拋物線y2的對稱軸交點的縱坐標(biāo)t的值或取值范圍.
【答案】(1)b=4;(2)y2=x2-4x+3;(3) t=-1,或<t≤11.
【解析】
試題分析:(1)把A(-3,0)代入y1=x2+bx+3求出b的值即可;
(2)將y1變形化成頂點式得:y1=(x+2)2-1,由平移的規(guī)律即可得出結(jié)果;
(3)求出拋物線y2的對稱軸和頂點坐標(biāo),求出與坐標(biāo)軸的交點坐標(biāo)E(1,0),F(3,0),D(0,3),由題意得出直線y=kx+k-1過定點(-1,-1)得出當(dāng)直線y=kx+k-1與圖象G有一個公共點時,t=-1,求出當(dāng)直線y=kx+k-1過F(3,0)時和直線過D(0,3)時k的值,分別得出直線的解析式,得出t的值,再結(jié)合圖象即可得出結(jié)果.
試題解析:(1)把A(-3,0)代入y1=x2+bx+3得:9-3b+3=0,
解得:b=4,
∴y1的表達(dá)式為:y=x2+4x+3;
(2)將y1變形得:y1=(x+2)2-1
據(jù)題意y2=(x+2-4)2-1=(x-2)2-1=x2-4x+3;
∴拋物線y2的表達(dá)式為y=x2-4x+3;
(3)∵y2=(x-2)2-1,
∴對稱軸是x=2,頂點為(2,-1);
當(dāng)y2=0時,x=1或x=3,
∴E(1,0),F(3,0),D(0,3),
∵直線y=kx+k-1過定點(-1,-1)
當(dāng)直線y=kx+k-1與圖象G有一個公共點時,t=-1,
當(dāng)直線y=kx+k-1過F(3,0)時,3k+k-1=0,
解得:k=,
∴直線解析式為y=x-,
把x=2代入=x-,得:y=-,
當(dāng)直線過D(0,3)時,k-1=3,
解得:k=4,
∴直線解析式為y=4x+3,
把x=2代入y=4x+3得:y=11,即t=11,
∴結(jié)合圖象可知t=-1,或<t≤11.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為1,求圖中陰影部分的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP,并廷長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線
②∠ADC=60°
③點D在AB的垂直平分線上
④若AD=2dm,則點D到AB的距離是1dm
⑤S△DAC:S△DAB=1:2
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3交x軸于點A(﹣1,0)和點B(3,0),與y軸交于點C,頂點是D,對稱軸交x軸于點E.
(1)求拋物線的解析式;
(2)點P是拋物線在第四象限內(nèi)的一點,過點P作PQ∥y軸,交直線AC于點Q,設(shè)點P的橫坐標(biāo)是m.
①求線段PQ的長度n關(guān)于m的函數(shù)關(guān)系式;
②連接AP,CP,求當(dāng)△ACP面積為時點P的坐標(biāo);
(3)若點N是拋物線對稱軸上一點,則拋物線上是否存在點M,使得以點B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出線段BN的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=5,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2﹣2x﹣3與交y軸負(fù)半軸于C點,直線y=kx+2交拋物線于E、F兩點(E點在F點左邊).使△CEF被y軸分成的兩部分面積差為5,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點P和點Q分別從點B和點C出發(fā),沿射線BC向右運動,且速度相同,過點Q作QH⊥BD,垂足為H,連接PH,設(shè)點P運動的距離為x(0<x≤2),△BPH的面積為S,則能反映S與x之間的函數(shù)關(guān)系的圖象大致為( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設(shè)今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com