【題目】如圖,在平面直角坐標系中,直線過點且與軸交于點,把點向左平移2個單位,再向上平移4個單位,得到點.過點且與平行的直線交軸于點.
(1)求直線CD的解析式;
(2)直線AB與CD交于點E,將直線CD沿EB方向平移,平移到經(jīng)過點B的位置結(jié)束,求直線CD在平移過程中與x軸交點的橫坐標的取值范圍.
【答案】(1)y=3x-10;(2)
【解析】
(1)先把A(6,m)代入y=-x+4得A(6,-2),再利用點的平移規(guī)律得到C(4,2),接著利用兩直線平移的問題設CD的解析式為y=3x+b,然后把C點坐標代入求出b即可得到直線CD的解析式;
(2)先確定B(0,4),再求出直線CD與x軸的交點坐標為(,0);易得CD平移到經(jīng)過點B時的直線解析式為y=3x+4,然后求出直線y=3x+4與x軸的交點坐標,從而可得到直線CD在平移過程中與x軸交點的橫坐標的取值范圍.
解:(1)把A(6,m)代入y=-x+4得m=-6+4=-2,則A(6,-2),
∵點A向左平移2個單位,再向上平移4個單位,得到點C,
∴C(4,2),
∵過點C且與y=3x平行的直線交y軸于點D,
∴CD的解析式可設為y=3x+b,
把C(4,2)代入得12+b=2,解得b=-10,
∴直線CD的解析式為y=3x-10;
(2)當x=0時,y=4,則B(0,4),
當y=0時,3x-10=0,解得x=,則直線CD與x軸的交點坐標為(,0),
易得CD平移到經(jīng)過點B時的直線解析式為y=3x+4,
當y=0時,3x+4=0,解得x=,則直線y=3x+4與x軸的交點坐標為(,0),
∴直線CD在平移過程中與x軸交點的橫坐標的取值范圍為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點E在AC上,∠AEB=∠ABC.
(1)圖1中,作∠BAC的角平分線AD,分別交CB、BE于D、F兩點,求證:∠EFD=∠ADC;
(2)圖2中,作△ABC的外角∠BAG的角平分線AD,分別交CB、BE的延長線于D、F兩點,試探究(1)中結(jié)論是否仍成立?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育文化用品商店購進籃球和排球共20個,進價和售價如下表,全部銷售完后共獲利潤260元.
籃球 | 排球 | |
進價(元/個) | 80 | 50 |
售價(元/個) | 95 | 60 |
求:(1)購進籃球和排球各多少個?
(2)銷售6個排球的利潤與銷售幾個籃球的利潤相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個零件的形狀如圖所示,按規(guī)定∠A應等于90°,∠B、∠D應分別是20°和30°.
(1)李叔叔量得∠BCD=142°,根據(jù)李叔叔量得的結(jié)果,你能斷定這個零件是否合格?請解釋你的結(jié)論.
(2)你知道∠B、∠D、∠BCD三角之間有何關(guān)系嗎?請寫出你的結(jié)論(不需說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的邊平行于坐標軸,對角線BD經(jīng)過坐標原點,點C在反比例函數(shù)y=的圖象上.若點A的坐標為(﹣2,﹣2),則k=( 。
A. 2 B. 4 C. 8 D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=AC,點D為BC的中點,點E、F分別在邊AB和邊AC上,且∠EDF=90°,則下列結(jié)論一定成立的是_______
①△ADF≌△BDE
②S四邊形AEDF=S△ABC
③BE+CF=AD
④EF=AD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD的位置如圖所示,解答下列問題:
(1)將四邊形ABCD先向左平移4格,再向下平移6格,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1;
(2)將四邊形A1B1C1D1繞點A1逆時針旋轉(zhuǎn)90°得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形的一邊在軸的正半軸上,點的坐標為, ,動點從原點出發(fā),在線段上以每秒2個單位的速度向點勻速運動,動點從原點出發(fā),沿軸的正半軸以每秒1個單位的速度向上勻速運動,過點作軸的平行線分別交于,設動點,同時出發(fā),當點到達點時,點也停止運動,他們運動的時間為秒 .
(1)點的坐標為_____,的坐標為____;
(2)當為何值時,四邊形為平行四邊形;
(3)是否存在某一時刻,使為直角三角形?若存在,請求出此時的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com