【題目】已知拋物線y=﹣x2x+2與x軸交于點(diǎn)A,B兩點(diǎn),交y軸于C點(diǎn),拋物線的對(duì)稱軸與x軸交于H點(diǎn),分別以OCOA為邊作矩形AECO

(1)求直線AC的解析式;

(2)如圖2,P為直線AC上方拋物線上的任意一點(diǎn),在對(duì)稱軸上有一動(dòng)點(diǎn)M,當(dāng)四邊形AOCP面積最大時(shí),求|PMOM|的最大值.

(3)如圖3,將△AOC沿直線AC翻折得△ACD,再將△ACD沿著直線AC平移得△A'CD'.使得點(diǎn)A′、C'在直線AC上,是否存在這樣的點(diǎn)D′,使得△AED′為直角三角形?若存在,請(qǐng)求出點(diǎn)D′的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1) yx+2;(2) 點(diǎn)M坐標(biāo)為(﹣2,)時(shí),四邊形AOCP的面積最大,此時(shí)|PMOM|有最大值; (3)存在,D′坐標(biāo)為:(04)或(﹣6,2或(,

【解析】

(1)令x=0,y=2,y=0,x=2或﹣6,求出點(diǎn)A、B、C坐標(biāo),即可求解;

(2)連接OP交對(duì)稱軸于點(diǎn)M,此時(shí),|PMOM|有最大值,即可求解;

(3)存在;AD′⊥AE;②AD′⊥ED′;③ED′⊥AE三種情況利用勾股定理列方程求解即可

1)令x=0,y=2,y=0,x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函數(shù)對(duì)稱軸為x=﹣2,頂點(diǎn)坐標(biāo)為(﹣2,),C點(diǎn)坐標(biāo)為(0,2),則過點(diǎn)C的直線表達(dá)式為ykx+2,將點(diǎn)A坐標(biāo)代入上式,解得k,直線AC的表達(dá)式為yx+2;

(2)如圖過點(diǎn)Px軸的垂線交AC于點(diǎn)H

四邊形AOCP面積=△AOC的面積+△ACP的面積,四邊形AOCP面積最大時(shí)只需要△ACP的面積最大即可,設(shè)點(diǎn)P坐標(biāo)為(mm2m+2),則點(diǎn)G坐標(biāo)為(m,m+2),SACPPGOAm2m+2m﹣2)6m2﹣3m,當(dāng)m=﹣3時(shí),上式取得最大值,則點(diǎn)P坐標(biāo)為(﹣3,).連接OP交對(duì)稱軸于點(diǎn)M,此時(shí),|PMOM|有最大值直線OP的表達(dá)式為yx,當(dāng)x=﹣2時(shí)y,點(diǎn)M坐標(biāo)為(﹣2,),|PMOM|的最大值為:=

(3)存在

AECD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EMDM,AMMC,設(shè)EMa,MC=6﹣a.在Rt△DCM,由勾股定理得MC2DC2+MD2,:(6﹣a2=22+a2解得a,MC,過點(diǎn)Dx軸的垂線交x軸于點(diǎn)N,EC于點(diǎn)H.在Rt△DMC,DHMCMDDC,DH2,DHHC,點(diǎn)D的坐標(biāo)為();

設(shè):△ACD沿著直線AC平移了m個(gè)單位,點(diǎn)A′坐標(biāo)(﹣6),點(diǎn)D′坐標(biāo)為(),而點(diǎn)E坐標(biāo)為(﹣6,2),==36,==,==AED′為直角三角形,分三種情況討論:

①當(dāng)+=時(shí),36+=,解得m=此時(shí)D′()為(0,4);

當(dāng)+=時(shí),36+=解得m=,此時(shí)D′()為(-6,2);

當(dāng)+=時(shí),+=36,解得m=m=,此時(shí)D′()為(-6,2)或().

綜上所述D坐標(biāo)為:(0,4)或(﹣6,2)或(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2﹣2mx+m2﹣3(m是常數(shù)).

(1)證明無論m取什么實(shí)數(shù),該拋物線與x軸都有兩個(gè)交點(diǎn);

(2)設(shè)拋物線的頂點(diǎn)為A,x軸兩個(gè)交點(diǎn)分別為B,D,BD的右側(cè),y軸的交點(diǎn)為C

求證當(dāng)m取不同值時(shí),△ABD都是等邊三角形

當(dāng)|m|≤,m≠0時(shí),△ABC的面積是否有最大值,如果有請(qǐng)求出最大值,如果沒有請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開放以下球類活動(dòng)項(xiàng)目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖(如圖,圖),請(qǐng)回答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校共有學(xué)生1900人,請(qǐng)你估計(jì)該校喜歡D項(xiàng)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊長為21m、寬為10m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間及周邊留有寬度相等的人行通道,且人行通道的寬度不能超過3米.

(1)如果兩塊綠地的面積之和為90m2,求人行通道的寬度;

(2)能否改變?nèi)诵型ǖ赖膶挾,使得每塊綠地的寬與長之比等于3:5,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長沙”的號(hào)召,我市某街道決定從備選的五種樹中選購一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(dòng)(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個(gè)不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)所給信息解答以下問題:

(1)這次參與調(diào)查的居民人數(shù)為:   ;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“楓樹”所在扇形的圓心角度數(shù);

(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請(qǐng)你估計(jì)這8萬人中最喜歡玉蘭樹的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、B、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正△ABC的頂點(diǎn)B(﹣3,0)、C(﹣1,0),過坐標(biāo)原點(diǎn)O的一條直線分別與邊AB、AC交于點(diǎn)M、N.若OM=2ON,則點(diǎn)N的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我漁政310船在南海海面上沿正東方向勻速航行,在A地觀測到我漁船C在東北方向上的我國某傳統(tǒng)漁場.若漁政310船航向不變,航行半小時(shí)后到達(dá)B處,此時(shí)觀測到我漁船C在北偏東30°方向上.問漁政310船再航行多久,離我漁船C的距離最近?(假設(shè)我漁船C捕魚時(shí)移動(dòng)距離忽略不計(jì),結(jié)果不取近似值.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】熱氣球的探測器顯示,從熱氣球底部A處看一棟高樓頂部的俯角為30°,看這棟樓底部的俯角為60°,熱氣球A處與地面距離為420米,求這棟樓的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案