【題目】觀察下面一列數(shù),探究其中的規(guī)律:—1,,,,,
(1)填空:第11,12,13三個數(shù)分別是 , , ;
(2)第2020個數(shù)是什么?
(3)如果這列數(shù)無限排列下去,與哪個數(shù)越來越近?
【答案】(1), ,;(2);(3)0.
【解析】
(1)把1等價于 ,經(jīng)觀察發(fā)現(xiàn)每一項的分子分別是1,分母等于各自的序號,如分母分別是1,2,3,4,5,6…,又知奇數(shù)項是負(fù)數(shù),偶數(shù)項是正數(shù),所以第11,12,13個數(shù)分別是-,,-;
(2)由(1)的分析可知第2020個數(shù)是 ;
(3)分子為1,分母越大,越接近0.
(1)將1等價于,即:, ,,,,
可以發(fā)現(xiàn)分子永遠(yuǎn)為1,分母等于序數(shù),奇數(shù)項為負(fù)數(shù),偶數(shù)項為正,由此可以推出第11,12,13個數(shù)分別是, ,;
(2)第n個數(shù)是(1)n,
所以第2020個數(shù)為:(1)2020 ;
(3)如果這列數(shù)無限排列下去,與0越來越近。
故答案為:(1), ,;(2);(3)0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為△ABC邊AC的中點,AD∥BC交BO的延長線于點D,連接DC,DB平分∠ADC,作DE⊥BC,垂足為E.
(1)求證:四邊形ABCD為菱形;
(2)若BD=8,AC=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.
(1)以景區(qū)大門為原點,向東為正方向,以1個單位長表示1千米,建立如圖所示的數(shù)軸,請在數(shù)軸上表示出上述A、B、C三個景區(qū)的位置.
(2)A景區(qū)與C景區(qū)之間的距離是多少?
(3)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充足電而途中不充電的情況下完成此次任務(wù)?請計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,點為上一點,連接,把沿折疊得到,延長交于,連接.
(1)求的度數(shù).
(2)如圖,為的中點,連接.
①求證:;
②若正方形邊長為,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“直角”在初中數(shù)學(xué)學(xué)習(xí)中無處不在在數(shù)學(xué)活動課上,李老師要求同學(xué)們用所學(xué)知識,利用無刻度的直尺和圓規(guī)判斷“已知∠AOB“是不是直角.甲、乙兩名同學(xué)各自給出不同的作法,來判斷∠AOB是不是直角
甲:如圖1,在OA、OB上分別取點CD,以C為圓心,CD長為半徑畫弧,交OB的反向延長線于點E,若OE=OD,則∠AOB=90°;
乙:如圖2,在OA、OB上分別截取OM=4個單位長度,ON=3個單位長度,若MN=5個單位長度,則∠AOB=90°;
甲、乙兩位同學(xué)作法正確的是( )
A. 甲正確,乙不正確B. 乙正確,甲不正確
C. 甲和乙都不正確D. 甲和乙都正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為3的正方形OABC的兩邊在兩坐標(biāo)軸上,拋物線y=-x2+bx+c經(jīng)過點A,C,與x軸交于另一點D,P為第一象限內(nèi)拋物線上一點,過P點作y軸的平行線交x 軸于點Q,交AC于點E.
(1)求拋物線解析式及點D的坐標(biāo);
(2)過E點作x軸的平行線交AB于點F,若以P,E,F為頂點的三角形與△ODC相似,求點P坐標(biāo);
(3)過P點作PH⊥AC于H,是否存在點P使△PEH的周長取得最大值,若存在,請求出點P坐標(biāo)及△PEH周長的最大值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程mx=2﹣x的解為整數(shù),且m為負(fù)整數(shù),求代數(shù)式5m2﹣[m2﹣(6m﹣5m2)﹣2(m2﹣3m)]的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的知識,后解答后面的問題:
探究:如圖,在△ABC中,已知∠B=∠C,求證:AB=AC.
證明:過點A作AD⊥BC,垂足為D, 在△ABD與△ACD中,
∠B=∠C, , , 所以△ABD≌△ACD( ),所以AB=AC.
(1)完成上述證明中的空白;
(2)已知如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠CAB.試問:AC+CD與AB相等嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標(biāo)為(m,-2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
【答案】(1)△AHO的周長為12;(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.
【解析】試題分析: (1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.
試題解析:(1)由OH=3,tan∠AOH=,得
AH=4.即A(-4,3).
由勾股定理,得
AO==5,
△AHO的周長=AO+AH+OH=3+4+5=12;
(2)將A點坐標(biāo)代入y=(k≠0),得
k=-4×3=-12,
反比例函數(shù)的解析式為y=;
當(dāng)y=-2時,-2=,解得x=6,即B(6,-2).
將A、B點坐標(biāo)代入y=ax+b,得
,
解得,
一次函數(shù)的解析式為y=-x+1.
考點:反比例函數(shù)與一次函數(shù)的交點問題.
【題型】解答題
【結(jié)束】
25
【題目】如圖,已知點A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點D,連接CD.
求證:①AB=AD;
②CD平分∠ACE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com