【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標(biāo)為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長為12;(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案;

2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3,tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5,

△AHO的周長=AO+AH+OH=3+4+5=12;

2)將A點坐標(biāo)代入y=k≠0),得

k=-4×3=-12,

反比例函數(shù)的解析式為y=;

當(dāng)y=-2時,-2=,解得x=6,即B6-2).

A、B點坐標(biāo)代入y=ax+b,得

,

解得,

一次函數(shù)的解析式為y=-x+1

考點:反比例函數(shù)與一次函數(shù)的交點問題.

型】解答
結(jié)束】
25

【題目】如圖,已知點A、C分別在∠GBE的邊BGBE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點D,連接CD

求證:①AB=AD;

②CD平分∠ACE

【答案】詳見解析.

【解析】(1)∵ADBE,

∴∠ADB=∠DBC

BD平分∠ABC,

∴∠ABD=∠DBC,

∴∠ABD=∠ADB

AB=AD;

2ADBE,

∴∠ADC=∠DCE

由①知AB=AD,

又∵AB=AC,

AC=AD,

∴∠ACD=∠ADC,

∴∠ACD=∠DCE,

CD平分∠ACE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面一列數(shù),探究其中的規(guī)律:—1,,,

1)填空:第11,12,13三個數(shù)分別是 , ;

2)第2020個數(shù)是什么?

3)如果這列數(shù)無限排列下去,與哪個數(shù)越來越近?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙OAC于點D,點EAB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DFDG,且交BC于點F.

(1)求證:AE=BF;

(2)連接EF,求證:∠FEB=∠GDA;

(3)連接GF,AE=2,EB=4,求ΔGFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10,出廠價為每件12,每月銷售量y(件)與銷售單價x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500

1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20,那么政府這個月為他承擔(dān)的總差價為多少元?

2設(shè)李明獲得的利潤為W(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?

3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000,那么政府為他承擔(dān)的總差價最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)(+10+(﹣4

2)(+++;

35.6+(﹣0.9+4.4+(﹣8.1

4)(﹣81÷×÷(﹣16

5)(﹣5×49

6)(﹣125×[2﹣(﹣2]300÷6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳環(huán)保你我同行兩年來,揚州市區(qū)的公共自行車給市民出行帶來切實方便電視臺記者在某區(qū)街頭隨機選取了市民進行調(diào)查調(diào)查的問題是您大概多久使用一次公共自行車?將本次調(diào)查結(jié)果歸為四種情況:A每天都用;B經(jīng)常使用C偶爾使用;D從未使用將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計圖:

根據(jù)圖中的信息解答下列問題:

1本次活動共有 位市民參與調(diào)查;

2補全條形統(tǒng)計圖

3根據(jù)統(tǒng)計結(jié)果,若該區(qū)有46萬市民,請估算每天都用公共自行車的市民約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】右圖為手的示意圖,在各個手指之間標(biāo)記字母AB,CD。請你按圖中箭頭所指的方向(即A→B→C→D→C→B→A→B→C→……的方式)從A開始數(shù)連續(xù)的正整數(shù)12,3,4,5,6,7,8,9,……

1)當(dāng)數(shù)到14時,對應(yīng)的字母是_________;

2)當(dāng)字母C201次出現(xiàn)時。恰好數(shù)到的數(shù)是_________;

3)當(dāng)字母C2n+1次出現(xiàn)時(n為正整數(shù)),恰好數(shù)到的數(shù)是__________(用含有n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AOB和兩點C、D,求作一點P,使PC=PD,且點P到AOB的兩邊的距離相等.

(要求:用尺規(guī)作圖,保留作圖痕跡,寫出作法,不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點D、E,得到 .

(1)求證:AB為⊙C的切線;

(2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案