【題目】如圖,,平分,上一點,于點,, ,則_____.

【答案】

【解析】

PPFOBF,根據(jù)角平分線的定義可得∠AOC=BOC=15°,根據(jù)平行線的性質(zhì)可得∠DPO=AOP,從而可得PD=OD,再根據(jù)30度所對的邊是斜邊的一半可求得PF的長,最后根據(jù)角平分線的性質(zhì)即可求得PE的長.

解:過PPFOBF,

∵∠AOB=30°,OC平分∠AOB,

∴∠AOC=BOC=15°

又∵PDOA,

∴∠DPO=AOP=15°,

PD=OD=4cm

∵∠AOB=30°,PDOA

∴∠BDP=30°,

∴在RtPDF中,PF=PD=2cm,

OC為角平分線且PEOA,PFOB,

PE=PF,

PE=PF=2cm


故答案為:2cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABDBDC的平分線交于E,BE交CD于點F,1+2=90°.求證:

(1)ABCD;

(2)2+3=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡比為i=12,頂部A處的高AC4 m,B,C在同一水平面上.

(1)求斜坡AB的水平寬度BC;

(2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運送,當(dāng)BF=3.5 m時,求點D離地面的高.(≈2.236,結(jié)果精確到0.1 m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BDCF成立.

1當(dāng)ABC繞點A逆時針旋轉(zhuǎn)θ(0°θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

2當(dāng)ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點H.

求證:BDCF;

當(dāng)AB=2,AD=3時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC 中,AB、AC 邊的垂直平分線相交于點 O,分別交 BC 邊于點 M、N,連接 AMAN

1)若AMN 的周長為 6,求 BC 的長;

2)若∠MON=30°,求∠MAN 的度數(shù);

3)若∠MON=45°,BM=3BC=12,求 MN 的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.

(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;

(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是邊長為1的正方形ABCD的對角線,BE平分∠DBCDC于點E,延長BC到點F,使CF=CE,連接DF,交BE的延長線于點G.

(1)求證:△BCE≌△DCF;

(2)求CF的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)圖象過點,頂點為,則結(jié)論:;②時,函數(shù)的最大值是;③;④;⑤.其中正確的結(jié)論有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC和∠ACB的平分線相交于點F,點點FDEBC,交AB于點D,交AC于點E。若BD=3DE=5,則線段EC的長為______

查看答案和解析>>

同步練習(xí)冊答案