【題目】如圖,給出五個等量關系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.
請你以其中兩個為條件,另外三個中的一個為結論,推出一個正確的結論(只需寫出一種情況),并加以證明.
已知:
求證:
證明:
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點D為x正半軸上一動點
(1)求A、B兩點的坐標
(2)如圖,∠ADO的平分線交y軸于點C,點 F為線段OD上一動點,過點F作CD的平行線交y軸于點H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關系,并予以證明
(3)以AO為腰,A為頂角頂點作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,雙曲線和直線y=kx+b交于A,B兩點,點A的坐標為(﹣3,2),BC⊥y軸于點C,且OC=6BC.
(1)求雙曲線和直線的解析式;
(2)直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點A(2,0),B(6,2),C(6,6),反比例函數(shù)y1=(x>0)的圖象過點D,點P是一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象與該反比例函數(shù)的一個公共點,對于下面四個結論:
①反比例函數(shù)的解析式是y1=;
②一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象一定經過(6,6)點;
③若一次函數(shù)y2=kx+3﹣3k的圖象經過點C,當x>2時,y1<y2;
④對于一次函數(shù)y2=kx+3﹣3k(k≠0),當y隨x的增大而增大時,點P橫坐標a的取值范圍是0<a<3.
其中正確的是( )
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉60°,使得點C旋轉到AB邊上的一點D,點A旋轉到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.
(1)求證:CF=DG;
(2)求出∠FHG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市304國道通遼至霍林郭勒段在修建過程中經過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數(shù),參考數(shù)據≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結論,其中不正確的是( 。
A. 當m=﹣3時,函數(shù)圖象的頂點坐標是(,)
B. 當m>0時,函數(shù)圖象截x軸所得的線段長度大于
C. 當m≠0時,函數(shù)圖象經過同一個點
D. 當m<0時,函數(shù)在x>時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴5元,用360元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價格各是多少元?
(2)若商店計劃購買這兩種商品共40件,且投入的經費不超過1150元,那么,最多可購買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對四邊形ABCD添加以下條件,使之成為平行四邊形,正面的添加不正確的是( )
A. AB∥CD,AD=BCB. AB=CD,AB∥CD
C. AB=CD,AD=BCD. AC與BD互相平分
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com