【題目】如圖,在△ABC中,AE是∠BAC的角平分線,交BC于點E,DEABAC于點D

(1)求證AD=ED

(2)AC=AB,DE=3,求AC的長.

【答案】(1)證明見解析;(2)6.

【解析】

1)由AE是∠BAC的角平分線可得∠DAE=BAE,由DEAB,可得∠DEA=EAB,則∠DEA=DAE,可得結(jié)論.
2)根據(jù)等腰三角形三線合一可得AEBC,可證∠C=CEDCD=DE,即可求AC的長.

證明:(1)AE是∠BAC的角平分線

∴∠DAE=BAE,

DEAB

∴∠DEA=EAB,

∴∠DAE=DEA,

AD=DE-;

(2)AB=AC,AE是∠BAC的角平分線

AEBC

∴∠C+CAE=90°,∠CED+DEA=90°,

∵∠CAE=DEA

∴∠C=CED-

DE=CD

AD=DE=CD=3

AC=6.

故答案為:(1)證明見解析;(2)6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,, 的中點.以每秒1個單位長度的速度從點出發(fā),沿向點運動;同時以每秒3個單位長度的速度從 出發(fā),沿向點運動.停止運動時,點也隨之停止運動.當(dāng)運動時間秒時,以點為頂點的四邊形是平行四邊形.的值為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,P表示的數(shù)是a,P1表示的數(shù)是,我們稱P1是點P的相關(guān)點”,已知數(shù)軸上A1的相關(guān)點為A2,A2的相關(guān)點為A3,A3的相關(guān)點為A4,這樣依次得到點A1、A2、A3,A4,…,An若點A1在數(shù)軸表示的數(shù)是,則點A2109在數(shù)軸上表示的數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角∠BAD=60°,坡長AB=20 m,為加強(qiáng)水壩強(qiáng)度,將壩底從A處向后水平延伸到F處,使新的背水坡的坡角∠F=45°,求AF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過B(3,0)、C(0,3)兩點,

(1)求拋物線的函數(shù)關(guān)系式;

(2)直接寫出,當(dāng)y3時,x的取值范圍是_____

(3)在拋物線的對稱軸上是否存在點M點,使△MOB是等腰三角形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個yx的函數(shù)圖象經(jīng)過平移后能與某反比例函數(shù)的圖象重合,那么稱這個函數(shù)是yx反比例平移函數(shù).例如: 的圖象向左平移2個單位,再向下平移1個單位得到 的圖象,則yx反比例平移函數(shù).如圖,在平面直角坐標(biāo)系中,點O為原點,矩形OABC的頂點A、C的坐標(biāo)分別為(9,0)、(0,3).點DOA的中點,連接OB、CD交于點E,“反比例平移函數(shù)的圖象經(jīng)過B、E兩點.則這個反比例平移函數(shù)的表達(dá)式為____________;這個反比例平移函數(shù)的圖象經(jīng)過適當(dāng)?shù)淖儞Q與某一個反比例函數(shù)的圖象重合,則寫出這個反比例函數(shù)的表達(dá)式為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BD是角平分線,點OAB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E

(1)求證:AC是⊙O的切線;

(2)若OB=5,CD=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護(hù)國家主權(quán)和海洋權(quán)力,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在處測得燈塔在北偏東方向上,繼續(xù)航行1小時到達(dá)處,此時測得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,已知A、B兩個邊長不相等的正方形紙片并排放置,若m7,n3,試求A、B兩個正方形紙片的面積之和.

2)如圖1,用m、n表示AB兩個正方形紙片的面積之和為 .(請直接寫出答案)

3)如圖2,若A、B兩個正方形紙片的面積之和為5,且圖2中陰影部分的面積為2,試求m、n的值.

4)現(xiàn)將正方形紙片A、B并排放置后構(gòu)造新的正方形得圖3,將正方形紙片B放在正方形紙片A的內(nèi)部得圖4,若圖3和圖4中陰影部分的面積分別為121,則AB兩個正方形紙片的面積之和為

查看答案和解析>>

同步練習(xí)冊答案