【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于點D.
(1)如圖1,點E,F(xiàn)在AB,AC上,且∠EDF=90°.求證:BE=AF;
(2)點M,N分別在直線AD,AC上,且∠BMN=90°.
①如圖2,當(dāng)點M在AD的延長線上時,求證:AB+AN=AM;
②當(dāng)點M在點A,D之間,且∠AMN=30°時,已知AB=2,直接寫出線段AM的長.
【答案】(1)證明見解析;(2)①證明見解析;②AM=.
【解析】(1)先判斷出∠BAD=∠CAD=45°,進而得出∠CAD=∠B,再判斷出∠BDE=∠ADF,進而判斷出△BDE≌△ADF,即可得出結(jié)論;
(2)①先判斷出AM=PM,進而判斷出∠BMP=∠AMN,判斷出△AMN≌△PMB,即可判斷出AP=AB+AN,再判斷出AP=AM,即可得出結(jié)論;
②先求出BD,再求出∠BMD=60°,最后用三角函數(shù)求出DM,即可得出結(jié)論.
(1)∵∠BAC=90°,AB=AC,
∴∠B=∠C=45°.
∵AD⊥BC,
∴BD=CD,∠BAD=∠CAD=45°,
∴∠CAD=∠B,AD=BD.
∵∠EDF=∠ADC=90°,
∴∠BDE=∠ADF,
∴△BDE≌△ADF(ASA),
∴DE=DF;
(2)①如圖1,過點M作MP⊥AM,交AB的延長線于點P,
∴∠AMP=90°.
∵∠PAM=45°,
∴∠P=∠PAM=45°,
∴AM=PM.
∵∠BMN=∠AMP=90°,
∴∠BMP=∠AMN.
∵∠DAC=∠P=45°,
∴△AMN≌△PMB(ASA),
∴AN=PB,
∴AP=AB+BP=AB+AN.
在Rt△AMP中,∠AMP=90°,AM=MP,
∴AP=AM,
∴AB+AN=AM;
②在Rt△ABD中,AD=BD=AB=.
∵∠BMN=90°,∠AMN=30°,
∴∠BMD=90°﹣30°=60°.
在Rt△BDM中,DM==,
∴AM=AD﹣DM=﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1, △ABC中,CD⊥AB于D,且BD: AD:CD=2:3:4,
(1)試說明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止.設(shè)點M運動的時間為t(秒),若△DMN的邊與BC平行,求t的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖①是邊長為1的等邊三角形紙板,周長記為C1,沿圖①的底邊剪去一塊邊長為的等邊三角形,得到圖②,周長記為C2,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉等邊三角形紙板邊長的),得圖③④…,圖n的周長記為Cn,若n≥3,則Cn-Cn-1=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,請用配方法探索有實數(shù)根的條件,并推導(dǎo)出求根公式,證明x1x2=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明準(zhǔn)備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是上的一個動點,
(1)問題發(fā)現(xiàn)
如圖1,當(dāng)點在線段上運動時,過點作,垂足為點,過點作,垂足為點,且.
①與是全等三角形嗎?請說明理由
②連接,試猜想的形狀,并說明理由;
(2)類比探究
如圖2,當(dāng)在線段的延長線上時,過點作,垂足為點,過點作,垂足為點,且,試直接寫出的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交x軸于A、B兩點(A在B的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點坐標(biāo)為D(﹣1,4).
(1)求A、B兩點的坐標(biāo);
(2)求拋物線的解析式;
(3)過點D作直線DE∥y軸,交x軸于點E,點P是拋物線上B、D兩點間的一個動點(點P不與B、D兩點重合),PA、PB與直線DE分別交于點F、G,當(dāng)點P運動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】霧霾天氣持續(xù)籠罩我國大部分地區(qū),困擾著廣大市民的生活,口罩市場出現(xiàn)熱銷,小明的爸爸用12000元購進甲、乙兩種型號的口罩在自家商店銷售,銷售完后共獲利2700元,進價和售價如表:
(1)小明爸爸的商店購進甲、乙兩種型號口罩各多少袋?
(2)該商店第二次以原價購進甲、乙兩種型號口罩,購進甲種型號口罩袋數(shù)不變,而購進乙種型號口罩袋數(shù)是第一次的2倍,甲種口罩按原售價出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號的口罩全部售完,要使第二次銷售活動獲利不少于2460元,每袋乙種型號的口罩最多打幾折?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com