【題目】如圖,AB=AC,∠A=120,BC=6cm,ED、FG分別是ABAC的垂直平分線,求BE的長(zhǎng).

【答案】BE=2cm

【解析】

連接AEAG,根據(jù)等腰三角形的性質(zhì)可得:∠B=C=30°,然后根據(jù)垂直平分線的性質(zhì)可得:BE=AE,AG=CG,從而得出:∠B=BAE=30°,∠C=CAG=30°,然后根據(jù)三角形外角的性質(zhì)可得:∠AEG=AGE=60°,再根據(jù)等邊三角形的判定可得:△AEG是等邊三角形,從而得出:AE=EG=AG,即可求出BE= EG= CG =2cm

解:連接AE、AG,

AB=AC,∠BAC=120°

∴∠B=C=30°,

DE、FG分別為線段AB、AC的垂直平分線,

BE=AE,AG=CG,

∴∠B=BAE=30°,∠C=CAG=30°,

∵∠AEG與∠AGE分別是△AEB與△AGC的外角,

∴∠AEG=B+BAE=30°+30°=60°,∠AGE=C+CAG=30°+30°=60°,

∴△AEG是等邊三角形,

AE=EG=AG

BE=AE,AG=CG,BC=6cm,

BE= EG= CG =2cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)M、N∠ABC∠ACB三等分線的交點(diǎn),若∠A=60°,則∠BMN的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)C0,6)的直線AC與直線OA相交于點(diǎn)A4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng),試解決下列問題:

1)求直線AC的解析式;

2)求OAC的面積;

3)是否存在點(diǎn)M、使OMC的面積是OAC的面積的?若存在,求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點(diǎn)P,且y的值隨x值的增大而增大,則點(diǎn)P的坐標(biāo)可以為(  )

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只口袋里放著個(gè)紅球、個(gè)黑球和若干個(gè)白球,這三種球除顏色外沒有任何區(qū)別,并攪勻.

取出紅球的概率為,白球有多少個(gè)?

取出黑球的概率是多少?

再在原來的袋中放進(jìn)多少個(gè)紅球,能使取出紅球的概率達(dá)到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,ABBC,ECD邊的中點(diǎn),將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,點(diǎn)D的對(duì)應(yīng)點(diǎn)為C,點(diǎn)A的對(duì)應(yīng)點(diǎn)為F,過點(diǎn)EMEAFBC于點(diǎn)M,連接AM、BD交于點(diǎn)N,現(xiàn)有下列結(jié)論:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點(diǎn)N為△ABM的外心.其中正確的個(gè)數(shù)為(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠ABC=45°,點(diǎn)DBC邊上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合),點(diǎn)E與點(diǎn)D關(guān)于直線AC對(duì)稱,連結(jié)AE,過點(diǎn)BBFED的延長(zhǎng)線于點(diǎn)F.

(1)依題意補(bǔ)全圖形;

(2)當(dāng)AE=BD時(shí),用等式表示線段DEBF之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在正方形ABCD中,點(diǎn)P沿邊DA從點(diǎn)D開始向點(diǎn)A1的速度移動(dòng),同時(shí)點(diǎn)Q沿邊ABBC從點(diǎn)A開始向點(diǎn)C2的速度移動(dòng),當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),P、Q同時(shí)停止移動(dòng).設(shè)點(diǎn)P出發(fā)秒時(shí),△PAQ的面積為,的函數(shù)圖像如圖②,則下列四個(gè)結(jié)論:①當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),點(diǎn)Q移動(dòng)到點(diǎn)C;②正方形邊長(zhǎng)為6cm;③當(dāng)AP=AQ時(shí),△PAQ面積達(dá)到最大值;④線段EF所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式為,其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與AB重合),分別以ACBC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AEBD交于點(diǎn)P

(觀察猜想)

AEBD的數(shù)量關(guān)系是   ;

②∠APD的度數(shù)為   

(數(shù)學(xué)思考)

如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①、②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;

(拓展應(yīng)用)

如圖3,點(diǎn)E為四邊形ABCD內(nèi)一點(diǎn),且滿足∠AED=∠BEC90°,AEDE,BECE,對(duì)角線AC、BD交于點(diǎn)P,AC10,則四邊形ABCD的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案