【題目】如圖, 已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側(cè))與y軸交于C點 .

(1)求拋物線的解析式和A、B兩點的坐標;

(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;

(3)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當MN=3時,求M點的坐標 .

【答案】(1),點A的坐標為(-2,0),點B的坐標為(8,0);(2)存在點P,使△PBC的面積最大,最大面積是16,理由見解析;(3)點M的坐標為(4-2)、(2,6)、(6,4)或(4+2,-).

【解析】

1 由拋物線的對稱軸為直線x=3,利用二次函數(shù)的性質(zhì)即可求出a值, 進而可得出拋物線的解析式, 再利用二次函數(shù)圖象上點的坐標特征, 即可求出點AB的坐標;

2 利用二次函數(shù)圖象上點的坐標特征可求出點C的坐標, 由點B、C的坐標, 利用待定系數(shù)法即可求出直線BC的解析式, 假設存在, 設點P的坐標為(x,),過點PPD//y軸, 交直線BC于點D,則點D的坐標為(x,),PD=- x2+2x,利用三角形的面積公式即可得出三角形PBC的面積關于x的函數(shù)關系式, 再利用二次函數(shù)的性質(zhì)即可解決最值問題;

3 設點M的坐標為(m,),則點N的坐標為(m,),進而可得出MN,結合MN=3即可得出關于m的含絕對值符號的一元二次方程, 解之即可得出結論

(1)拋物線的對稱軸是直線,

,解得:

拋物線的解析式為

時,

解得:,,

的坐標為,點的坐標為

(2) 當時,,

的坐標為

設直線的解析式為

代入,

,解得:,

直線的解析式為

假設存在, 設點的坐標為,過點軸, 交直線于點,則點的坐標為,如圖所示 .

,

時,的面積最大, 最大面積是 16 .

存在點,使的面積最大, 最大面積是 16 .

(3) 設點的坐標為,則點的坐標為,

時, 有,

解得:,

的坐標為;

時, 有,

解得:,

的坐標為,,

綜上所述:點的坐標為,、,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于Ax10)、Bx2,0)兩點,且x1x2y軸交于點C0,4),其中x1,x2是方程x2﹣4x﹣12=0的兩個根.

1)求拋物線的解析式;

2)點M是線段AB上的一個動點,過點MMN∥BC,交AC于點N,連結CM,當△CMN的面積最大時,求點M的坐標;

3)點D4k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、DE、F為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ACCB,OAB的中點,CA與⊙O相切于點E,CO交⊙O于點D

1)求證:CB是⊙O的切線;

2)若∠ACB80°,點P是⊙O上一個動點(不與DE兩點重合),求∠DPE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四張背面完全相同的紙牌(如圖,用、、表示),正面分別寫有四個不同的條件.小明將這4張紙牌背面朝上洗勻后,先隨機抽出一張(不放回),再隨機抽出一張.

(1)寫出兩次摸牌出現(xiàn)的所有可能的結果(用、、、表示);

(2)以兩次摸出的牌面上的結果為條件,求能判斷四邊形ABCD為平行四邊形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形ABC內(nèi)有一點P,連接AP、BP、CP,若∠BPC=150°,BP=3,AP=5,則CP_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校舉辦了學生國學經(jīng)典大賽.比賽項目為:.唐詩;.宋詞;.論語;.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機抽取一個比賽項目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則小紅和小明都沒有抽到論語的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,四條拋物線如圖所示,其解析式中的二次項系數(shù)一定小于1的是( 。

A. y1 B. y2 C. y3 D. y4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y果.

下面有三個推斷:

①當投擲次數(shù)是500時,計算機記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實驗次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計釘尖向上的概率是0.618;

③若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

同步練習冊答案