【題目】如果ab,則-ac2________bc2(c0)

【答案】

【解析】

先根據(jù)不等式的性質(zhì)判斷-a-b的大小關(guān)系,再判斷-ac2與-bc2的大小關(guān)系.

ab,

-a<-b,

c0,

c2>0,

∴-ac2<bc2.

故答案為:<.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)E為AD中點(diǎn),點(diǎn)F為BC邊上任一點(diǎn),過(guò)點(diǎn)F分別作EB,EC的垂線,垂足分別為點(diǎn)G,H,則FG+FH為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在四邊形ABCD中,已知∠ABCADC180°,ABAD,ABAD,點(diǎn)ECD的延長(zhǎng)線上,∠12

1)求證:∠3E;

2)求證:CA平分∠BCD;

3)如圖(2),設(shè)AFABC的邊BC上的高,求證:CE2AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有質(zhì)地均勻的A、B、C、D四張卡片,上面對(duì)應(yīng)的圖形分別是圓、正方形、正三角形、平行四邊形,將這四張卡片放入不透明的盒子中搖勻,從中隨機(jī)抽出一張(不放回),再隨機(jī)抽出第二張.

1)如果要求抽出的兩張卡片上的圖形,既有圓又有三角形,請(qǐng)你用列表或畫樹狀圖的方法,求出出現(xiàn)這種情況的概率;

2)因?yàn)樗膹埧ㄆ嫌袃蓮埳系膱D形,既是中心對(duì)稱圖形,又是軸對(duì)稱圖形,所以小明和小東約定做一個(gè)游戲,規(guī)則是:如果抽出的兩個(gè)圖形,既是中心對(duì)稱圖形又是軸對(duì)稱圖形,則小明贏;否則,小東贏.問(wèn)這個(gè)游戲公平嗎?為什么?如果不公平,請(qǐng)你設(shè)計(jì)一個(gè)公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近 ;(精確到0.1)

(2)試估算口袋中白種顏色的球有多少只?

(3)請(qǐng)畫樹狀圖或列表計(jì)算:從中先摸出一球,不放回,再摸出一球;這兩只球顏色不同的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)四邊形的兩條對(duì)角線互相垂直且相等,則稱這個(gè)四邊形為奇妙四邊形.如圖1,四邊形ABCD中,若AC=BD,ACBD,則稱四邊形ABCD為奇妙四邊形.根據(jù)奇妙四邊形對(duì)角線互相垂直的特征可得奇妙四邊形的一個(gè)重要性質(zhì):奇妙四邊形的面積等于兩條對(duì)角線乘積的一半.根據(jù)以上信息回答:

1)矩形__________奇妙四邊形(填不是);

2)如圖2,已知⊙O的內(nèi)接四邊形ABCD奇妙四邊形,若⊙O的半徑為6,BCD=60°.求奇妙四邊形”ABCD的面積;

3)如圖3,已知⊙O的內(nèi)接四邊形ABCD奇妙四邊形,作OMBCM.請(qǐng)猜測(cè)OMAD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABCACBA50°,P是△ABC內(nèi)一點(diǎn),且∠ACPPBC,則∠BPC的度數(shù)為( )

A. 130° B. 115° C. 110° D. 105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,BAC=120°DE垂直平分AC,交BCD,交ACE,且DE=2cm,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB=90°,BD是△ABC的角平分線,P射線AC上任意一點(diǎn) (不與AD、C三點(diǎn)重合),過(guò)點(diǎn)PPQAB,垂足為Q,交線段BDE

(1)如圖①,當(dāng)點(diǎn)P在線段AC上時(shí),說(shuō)明∠PDE=∠PED

(2)畫出∠CPQ的角平分線交線段AB于點(diǎn)F,則PFBD有怎樣的位置關(guān)系?畫出圖形并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案