【題目】有質(zhì)地均勻的A、B、C、D四張卡片,上面對應(yīng)的圖形分別是圓、正方形、正三角形、平行四邊形,將這四張卡片放入不透明的盒子中搖勻,從中隨機(jī)抽出一張(不放回),再隨機(jī)抽出第二張.
(1)如果要求抽出的兩張卡片上的圖形,既有圓又有三角形,請你用列表或畫樹狀圖的方法,求出出現(xiàn)這種情況的概率;
(2)因為四張卡片上有兩張上的圖形,既是中心對稱圖形,又是軸對稱圖形,所以小明和小東約定做一個游戲,規(guī)則是:如果抽出的兩個圖形,既是中心對稱圖形又是軸對稱圖形,則小明贏;否則,小東贏.問這個游戲公平嗎?為什么?如果不公平,請你設(shè)計一個公平的游戲規(guī)則.
【答案】(1);(2)此游戲不公平,可以設(shè)計這樣的一個游戲規(guī)則:如果抽出的兩個圖形,都是軸對稱圖形,則小明贏;否則,小東贏.
【解析】試題分析:(1)利用列表法列舉出所有結(jié)果即可,根據(jù)概率公式計算即可;(2)利用(1)中的表格即可求出兩人獲勝的概率,進(jìn)而判別游戲公平性.
試題解析:
(1)列表得:
圓 | 正方形 | 正三角形 | 平行四邊形 | |
圓 | (圓,正方形) | (圓,正三角形) | (圓,平行四邊形) | |
正方形 | (正方形,圓) | (正方形,正三角形) | (正方形,平行四邊形) | |
正三角形 | (正三角形,圓) | (正三角形,正方形) | (正三角形,平行四邊形) | |
平行四邊形 | (平行四邊形,圓) | (平行四邊形,正方形) | (平行四邊形,正三角形) |
由上表可知,所有等可能結(jié)果共有12種,既有圓又有三角形的結(jié)果共2種,故出現(xiàn)這種情況的概率為: ;
(2)由上圖表可得出,既是中心對稱圖形又是軸對稱圖形有:(正方形,圓),(圓,正方形)兩種,則小明贏的概率為:
故小東贏的概率為: ,故此游戲不公平,
可以設(shè)計這樣的一個游戲規(guī)則:如果抽出的兩個圖形,都是軸對稱圖形,則小明贏;否則,小東贏.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0;⑤4ac﹣b2<0,正確的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-3x+m(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關(guān)于x的一元二次方程x2-3x+m=0的兩實數(shù)根是( )
A. x1=1,x2=-1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(-4,0),B(2,6)兩點.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)在直角坐標(biāo)系中,畫出這個函數(shù)的圖象;
(3)求這個一次函數(shù)與坐標(biāo)軸圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點稱為整點,記頂點都是整點的三角形為整點三角形.如圖,已知整點A(2,3),B(4,4),請在所給網(wǎng)格區(qū)域(含邊界)上按要求畫整點三角形.
(1)在圖1中畫一個△PAB,使點P的橫、縱坐標(biāo)之和等于點A的橫坐標(biāo);
(2)在圖2中畫一個△PAB,使點P,B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形內(nèi)接于,點P在弧BC上,PA與BC相交于點D,若PB=3,PC=6,則PD=( )
A. 1.5 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作已知三角形的高”的尺規(guī)作圖過程.
已知: .
求作: 邊上的高
作法:如圖,
(1)分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于, 兩點;
(2)作直線,交于點;
(3)以為圓心, 為半徑⊙O,與CB的延長線交于點D,連接AD,線段AD即為所作的高.
請回答;該尺規(guī)作圖的依據(jù)是___________________________________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖, 是內(nèi)一點, , , , 分別是垂足,且.
()求證:點在的平分線上.
()若點是射線上一點,點是射線上一點,且, .
①當(dāng)是等腰三角形時,求點到射線的距離;
②連接, , ,當(dāng)的周長最小時,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com