【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線.

(1)求證:ADE≌△CBF;

(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

【答案】(1)證明見解析;(2)若∠ADB是直角,則四邊形BEDF是菱形,理由見解析.

【解析】試題(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD∠A=∠C,又由E、F分別為邊ABCD的中點(diǎn),可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF

2)先證明BEDF平行且相等,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.

試題解析:(1)證明:四邊形ABCD是平行四邊形,

∴AD=BC,AB=CD,∠A=∠C,

∵E、F分別為邊ABCD的中點(diǎn),

∴AE=ABCF=CD,

∴AE=CF

△ADE△CBF中,

∴△ADE≌△CBFSAS);

2)若∠ADB是直角,則四邊形BEDF是菱形,理由如下:

解:由(1)可得BE=DF,

∵AB∥CD,

∴BE∥DFBE=DF,

四邊形BEDF是平行四邊形,

連接EF,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),

∴DF∥AE,DF=AE,

四邊形AEFD是平行四邊形,

∴EF∥AD,

∵∠ADB是直角,

∴AD⊥BD,

∴EF⊥BD,

四邊形BFDE是平行四邊形,

四邊形BFDE是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的網(wǎng)格紙中,建立了平面直角坐標(biāo)系,點(diǎn),點(diǎn),

以點(diǎn)為對稱中心,畫出,使關(guān)于點(diǎn)對稱,并寫出下列點(diǎn)的坐標(biāo):________,________;

多邊形的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,的中垂線的角平分線交于點(diǎn),則四邊形的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,ABAC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點(diǎn)E,

1)若∠ACE18°,則∠ECD   

2)探索:∠ACE與∠ACD有怎樣的數(shù)量關(guān)系?猜想并證明.

3)如圖2,作△ABC的高AF并延長,交BD于點(diǎn)G,交CD延長線于點(diǎn)H,求證:CH2+DH22AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象經(jīng)過點(diǎn),對稱軸為直線,一次函數(shù)的圖象經(jīng)過點(diǎn),交軸于點(diǎn),交拋物線于另一點(diǎn),點(diǎn)、位于點(diǎn)的同側(cè).

求拋物線的解析式;

,求一次函數(shù)的解析式;

的條件下,當(dāng)時,拋物線的對稱軸上是否存在點(diǎn),使得同時與軸和直線都相切,如果存在,請求出點(diǎn)的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個圖形成中心對稱,則下列說法:

對應(yīng)點(diǎn)的連線一定經(jīng)過對稱中心;

這兩個圖形的形狀和大小完全相同;

這兩個圖形的對應(yīng)線段一定互相平行;

將一個圖形圍繞對稱中心旋轉(zhuǎn)后必與另一個圖形重合.其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點(diǎn)D在邊上,將繞點(diǎn)A逆時針轉(zhuǎn),使重合,點(diǎn)D的對應(yīng)點(diǎn)是E.若點(diǎn)BD、E在同一條直線上,則的度數(shù)為_____(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)銷一種商品,已知其每件進(jìn)價為40元,F(xiàn)在每件售價為70元,每星期可賣出500件。該商場通過市場調(diào)查發(fā)現(xiàn):若每件漲價1元,則每星期少賣出10件;若每件降價1元,則每星期多賣出mm為正整數(shù))件。設(shè)調(diào)查價格后每星期的銷售利潤為W元。

(1)設(shè)該商品每件漲價xx為正整數(shù))元,

①若x=5,則每星期可賣出____件,每星期的銷售利潤為_____元;

②當(dāng)x為何值時,W最大,W的最大值是多少。

(2)設(shè)該商品每件降價yy為正整數(shù))元,

①寫出WY的函數(shù)關(guān)系式,并通過計(jì)算判斷:當(dāng)m=10時每星期銷售利潤能否達(dá)到(1)中W的最大值;

②若使y=10時,每星期的銷售利潤W最大,直接寫出W的最大值為_____。

(3)若每件降價5元時的每星期銷售利潤,不低于每件漲價15元時的每星期銷售利潤,求m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個圓錐的高為cm,側(cè)面展開圖是半圓.

求:(1)圓錐的母線長與底面半徑之比;

2)求∠BAC的度數(shù);

3)圓錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案