【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當△PAB為直角三角形時,AP的長為

【答案】222

【解析】

本題根據(jù)題意分三種情況進行分類求解,結(jié)合三角函數(shù),等邊三角形的性質(zhì)即可解題.

試題當∠APB=90°時(如圖1),

∵AO=BO,

∴PO=BO

∵∠AOC=60°,

∴∠BOP=60°

∴△BOP為等邊三角形,

∵AB=BC=4

;

∠ABP=90°時(如圖2),

∵∠AOC=∠BOP=60°,

∴∠BPO=30°

,

在直角三角形ABP中,

,

如圖3,∵AO=BO,∠APB=90°

∴PO=AO,

∵∠AOC=60°

∴△AOP為等邊三角形,

∴AP=AO=2,

故答案為2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長青化工廠與AB兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地.已知公路運價為1.5/(噸·千米),鐵路運價為1.2/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.

求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產(chǎn)品多少噸?

2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某?萍紝嵺`社團制作實踐設(shè)備,小明的操作過程如下:

①小明取出老師提供的圓形細鐵環(huán),先通過在圓一章中學到的知識找到圓心O,再任意找出圓O的一條直徑標記為AB(如圖1),測量出AB=4分米;

②將圓環(huán)進行翻折使點B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點分別標記為C、D(如圖2);

③用一細橡膠棒連接C、D兩點(如圖3);

④計算出橡膠棒CD的長度.

小明計算橡膠棒CD的長度為( )

A. 2分米 B. 2分米 C. 3分米 D. 3分米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,CDAB垂足為DAE平分∠CABCD于點F,交BC于點E,EHAB,垂足為H,連接FH.

求證:(1)CFCE

(2)四邊形CFHE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為培養(yǎng)學生自主意識,拓寬學生視野,促進學習與生活的深度融合我市某中學決定組織部分學生去青少年綜合實踐基地進行綜合實踐活動在參加此次活動的師生中,若每位老師帶17個學生,還剩12個學生沒人帶;若每位老師帶18個學生,就有一位老師少帶4個學生現(xiàn)有甲、乙兩種大客車它們的載客量和租金如表所示

甲種客車

乙種客車

載客量(人/輛)

30

42

租金(元/輛)

300

400

學校計劃此實踐活動的租車總費用不超過3100元,為了安全每輛客車上至少要有2名老師.

1)參加此次綜合實踐活動的老師和學生各有多少人?

2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,租用客車總數(shù)為多少輛?

3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB分別交x、y軸于點AB,直線BC分別交xy軸于點C、B,點A的坐標為(2,0),∠ABO=30°,且AB⊥BC

1)求直線BCAB的解析式;

2)將點B沿某條直線折疊到點O,折痕分別交BC、BA于點E、D,在x軸上是否存在點F,使得點D、E、F為頂點的三角形是以DE為斜邊的直角三角形?若存在,請求出F點坐標;若不存在,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,點分別在上,且

1)求證:四邊形是菱形;

2)求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。

現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A,C的坐標分別為A(10,0),C(0,4),點D是OA的中點,點P為線段BC上的點.小明同學寫出了一個以O(shè)D為腰的等腰三角形ODP的頂點P的坐標(3,4),請你寫出其余所有符合這個條件的P點坐標   

查看答案和解析>>

同步練習冊答案