【題目】閱讀下列推理過程,在括號中填寫理由.如圖,點、分別在線段、上,,交于點,平分,求證:平分.
證明:∵平分(已知)
∴(______)
∵(已知)
∴(______)
故(______)
∵(已知)
∴(______)
∴(______)
∴(等量代換)
∴平分(______)
【答案】角平分線的定義;兩直線平行,內(nèi)錯角相等;等量代換;兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;角平分線的定義
【解析】
根據(jù)角平分線的定義得到∠1=∠2,根據(jù)平行線的性質(zhì)得到∠1=∠3,等量代換得到∠2=∠3,根據(jù)平行線的性質(zhì)得到∠2=∠5,等量代換即可得到結(jié)論;
證明:∵平分(已知),
∴(角平分線的定義),
∵(已知),
∴(兩直線平行,內(nèi)錯角相等),
故(等量代換),
∵(已知),
∴(兩直線平行,同位角相等),
∴(兩直線平行,內(nèi)錯角相等),
∴(等量代換),
∴平分(角平分線的定義);
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京沈高速鐵路赤峰至喀左段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題發(fā)現(xiàn)
如圖,中,平分,平分,經(jīng)過點,與、相交于點、,且.
求證:的周長等于.
(1)小明做完該題后,發(fā)現(xiàn)、、存在特定的數(shù)量關(guān)系,請你直接寫出這個數(shù)量關(guān)系;
拓廣探索
(2)如圖1,將題中“平分”改為“平分的外角”,其他條件不變,請判斷、、的數(shù)量關(guān)系,并證明這個數(shù)量關(guān)系;
(3)如圖2,將題中“平分,平分”改為“平分的外角,平分的外角”,其他條件不變,請直接寫出、、的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿著CB方向勻速移動,速度為1cm/s;當(dāng)△PNM停止平移時,點Q也停止移動,如圖②.設(shè)移動時間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問題:
(1)當(dāng)t為何值時,PQ∥AB?
(2)當(dāng)t=3時,求△QMC的面積;
(3)是否存在某一時刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七班共有45人,該班計劃為每名學(xué)生購買一套學(xué)具,超市現(xiàn)有A、B兩種品牌學(xué)具可供選擇已知1套A學(xué)具和1套B學(xué)具的售價為45元;2套A學(xué)具和5套B學(xué)具的售價為150元.
、B兩種學(xué)具每套的售價分別是多少元?
現(xiàn)在商店規(guī)定,若一次性購買A型學(xué)具超過20套,則超出部分按原價的6折出售設(shè)購買A型學(xué)具a套且不超過30套,購買A、B兩種型號的學(xué)具共花費w元.
請寫出w與a的函數(shù)關(guān)系式;
請幫忙設(shè)計最省錢的購買方案,并求出所需費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:河上有一座拋物線形橋洞,已知橋下的水面離橋拱頂部3m時,水面寬AB=6m,建立如圖所示的坐標(biāo)系.
(1)當(dāng)水位上升0.5m時,求水面寬度CD為多少米?(結(jié)果可保留根號)
(2)有一艘游船它的左右兩邊緣最寬處有一個長方體形狀的遮陽棚,此船正對著橋洞在上述河流中航行,若這船寬(最大寬度)2米,從水面到棚頂高度為1.8米.問這艘船能否從橋下洞通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數(shù)的表達式;
(2)求出四邊形ABPC的面積最大時的P點坐標(biāo)和四邊形ABPC的最大面積;
(3)在直線BC找一點Q,使得△QOC為等腰三角形,寫出Q點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB交AB于點D;∠CAE=∠B.
(1)如果AC=3.5 cm,求AB的長度;
(2)猜想:ED與AB的位置關(guān)系,并證明你的猜想。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的三個頂點在邊長為1的正方形網(wǎng)格中,已知,,.
(1)畫出關(guān)于軸對稱的(其中,,分別是,,的對應(yīng)點,不寫畫法);
(2)分別寫出,,三點的坐標(biāo).
(3)請寫出所有以為邊且與全等的三角形的第三個頂點(不與重合)的坐標(biāo)_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com