【題目】RtABC中,∠A=90°,AC=AB=4,DE分別是邊AB,AC的中點(diǎn),若等腰RtADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到等腰RtAD1E1,設(shè)旋轉(zhuǎn)角為α0α≤180°),記直線BD1CE1的交點(diǎn)為P

1)如圖1,當(dāng)α=90°時(shí),線段BD1的長等于      ,線段CE1的長等于      ;(直接填寫結(jié)果)

2)如圖2,當(dāng)α=135°時(shí),求證:BD1=CE1,且BD1CE1.

【答案】(1)2 2;(2)證明見解析.

【解析】試題分析:(1)利用等腰直角三角形的性質(zhì)結(jié)合勾股定理分別得出BD1的長和CE1的長;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得出,∠D1AB=∠E1AC=135°,進(jìn)而求出△D1AB≌△E1AC(SAS),即可得出答案.

試題解析:1∵∠A=90°,AC=AB=4,D,E分別是邊AB,AC的中點(diǎn),

AE=AD=2

∵等腰RtADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到等腰RtAD1E1,設(shè)旋轉(zhuǎn)角為α0α≤180°),

∴當(dāng)α=90°時(shí),AE1=2,E1AE=90°,

BD1=,E1C=;

2)證明:當(dāng)α=135°時(shí),如圖2,

RtAD1E是由RtADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)135°得到,

AD1=AE1,D1AB=E1AC=135°,

D1ABE1AC

,

∴△D1AB≌△E1ACSAS),

BD1=CE1,且∠D1BA=E1CA

記直線BD1AC交于點(diǎn)F,

∴∠BFA=CFP,

∴∠CPF=FAB=90°,

BD1CE1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有一個(gè)轉(zhuǎn)盤被平均分成6等份,分別標(biāo)有數(shù)字2、3、4、56、7這六個(gè)數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時(shí),指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字,求:

1)轉(zhuǎn)到數(shù)字10______(從不確定事件”“必然事件”“不可能事件選一個(gè)填入);

2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于3的概率是______

3)現(xiàn)有兩張分別寫有34的卡片,要隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長度.

①這三條線段能構(gòu)成三角形的概率是多少?

②這三條線段能構(gòu)成等腰三角形的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),∠1=∠2,∠C=∠D

試說明:AC∥DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A12),B3,1),C﹣2,﹣1).

(1)在圖中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1 ;

(2)寫出點(diǎn)A1 , B1 C1的坐標(biāo)(直接寫答案), A1________ ,B1________ ,C1________

(3)△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是反比例函數(shù)y=k≠0圖象上一點(diǎn),ABx軸于B點(diǎn),一次函數(shù)y=ax+ba≠0)的圖象交y軸于D0,-2),交x軸于C點(diǎn),并與反比例函數(shù)的圖象交于A,E兩點(diǎn),連接OA,若AOD的面積為4,且點(diǎn)COB中點(diǎn).

1)分別求雙曲線及直線AE的解析式;

2)若點(diǎn)Q在雙曲線上,且SQAB=4SBAC,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1(點(diǎn)A與點(diǎn)B不重合),我們定義:這樣的兩條拋物L1L2互為友好拋物線,可見一條拋物線的友好拋物線可以有多條.

1)如圖2,已知拋物線L3y2x28x4y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對稱軸對稱的點(diǎn)D的坐標(biāo);

2)請求出以點(diǎn)D為頂點(diǎn)的L3的友好拋物線L4的解析式,并指出L3L4y同時(shí)隨x增大而增大的自變量的取值范圍;

3)若拋物ya1 (xm) 2n的任意一條友好拋物線的解析式為ya2 (xh) 2k,請寫出a1a2的關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BAC=70°,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到AB'C',連接C'C.若C'CAB,則BAB'=______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列推理過程,在括號中填寫理由.

如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D.試說明:AC∥DF.

解:∵∠1=∠2(已知),∠1=∠3______________,

∴∠2=∠3___________________

______________________________________

∴∠C=∠ABD ________________________________

又∵∠C=∠D____________,

∴∠D=∠ABD(等量代換)

∴AC∥DF______________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)A36)、Bm,0)、C3,0),并且m3,D為拋物線的頂點(diǎn).

(1)求b,c,m的值;

(2)設(shè)點(diǎn)P是線段OC上一點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),且滿足∠PDC=BAC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案