【題目】費(fèi)爾茲獎是國際上享有崇高榮譽(yù)的一個數(shù)學(xué)獎項(xiàng),每4年評選一次,在國際數(shù)學(xué)家大會上頒給有卓越貢獻(xiàn)的年齡不超過40歲的年輕數(shù)學(xué)家,美籍華人丘成桐1982年獲得費(fèi)爾茲獎.為了讓學(xué)生了解費(fèi)爾茲獎得主的年齡情況,我們查取了截止到201860名費(fèi)爾茲獎得主獲獎時的年齡數(shù)據(jù),并對數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.

a.截止到2018年費(fèi)爾茲獎得主獲獎時的年齡數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成5組,各組是28≤x31,31≤x34,34≤x37,37≤x40,x≥40):

b.如圖2,在a的基礎(chǔ)上,畫出扇形統(tǒng)計圖;

c.截止到2018年費(fèi)爾茲獎得主獲獎時的年齡在34≤x37這一組的數(shù)據(jù)是:

36

35

34

35

35

34

34

35

36

36

36

36

34

35

d.截止到2018年時費(fèi)爾茲獎得主獲獎時的年齡的平均數(shù)、中位數(shù)、眾數(shù)如下:

年份

平均數(shù)

中位數(shù)

眾數(shù)

截止到2018

35.58

m

37,38

根據(jù)以上信息,回答下列問題:

1)依據(jù)題意,補(bǔ)全頻數(shù)直方圖;

231≤x34這組的圓心角度數(shù)是度,并補(bǔ)全扇形統(tǒng)計圖;

3)統(tǒng)計表中中位數(shù)m的值是;

4)根據(jù)以上統(tǒng)計圖表試描述費(fèi)爾茲獎得主獲獎時的年齡分布特征.

【答案】1)如圖見解析;(231≤x34這組的圓心角度數(shù)是 78度,補(bǔ)全扇形統(tǒng)計圖見解析;(3)中位數(shù)m的值是 36;(4)答案不唯一,如:費(fèi)爾茲獎得主獲獎時年齡集中在37歲至40歲.

【解析】

1)根據(jù)總?cè)藬?shù)為60求出第二組的人數(shù)即可解決問題;

2)根據(jù)圓心角=360°×百分比計算即可,根據(jù)百分比的和為1,求出第二組的百分比,即可畫出扇形統(tǒng)計圖;

3)根據(jù)中位數(shù)的定義,中位數(shù)等于第30,31的年齡的平均數(shù);

4)答案不唯一,合理即可.

1)如圖;

231≤x34這組的圓心角度數(shù)=360°×21.7%≈78°;

3)中位數(shù)等于第30,31的年齡的平均數(shù),第30,31的年齡位于34≤x37組的最后2個,為36,36,故統(tǒng)計表中中位數(shù)m的值是 36;

4)答案不唯一,如:費(fèi)爾茲獎得主獲獎時年齡集中在37歲至40歲.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b20;②4a+c2b③3b+2c0;④mam+b+bam≠﹣1),其中正確結(jié)論的個數(shù)是( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B是反比例函數(shù)yk0)圖象上的兩點(diǎn),延長線段ABy軸于點(diǎn)C,且點(diǎn)B為線段AC中點(diǎn),過點(diǎn)AADx軸于點(diǎn)D,點(diǎn)E為線段OD的三等分點(diǎn),且OEDE.連接AE、BE,若SABE7,則k的值為( )

A.12B.10C.9D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角OAB的斜邊OBx軸上,且OB4,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點(diǎn)C,交AB于點(diǎn)D,則點(diǎn)D坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三名快遞員某天的工作情況如圖所示,其中點(diǎn),的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員上午派送快遞所用的時間和件數(shù);點(diǎn),,的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員下午派送快遞所用的時間和件數(shù).有如下三個結(jié)論:①上午派送快遞所用時間最短的是甲;②下午派送快遞件數(shù)最多的是丙;③在這一天中派送快遞總件數(shù)最多的是乙.上述結(jié)論中,所有正確結(jié)論的序號是(

A. ①②B. ①③C. D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三位數(shù)兩個數(shù)位上數(shù)字的和等于另一個數(shù)位上的數(shù)字,則稱這個三位數(shù)為“均衡三位數(shù)”.現(xiàn)從1,23,455個數(shù)字中任取三個數(shù)字,組成無重復(fù)數(shù)字且百位數(shù)字、十位數(shù)字、個位數(shù)字依次增大的三位數(shù).

1)請列舉出所有可能得到的三位數(shù);

2)小明和小亮玩一個游戲,游戲規(guī)則如下:若(1)中組成的三位數(shù)是“均衡三位數(shù)”,則小明勝;否則小亮勝.這個游戲公平嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,CAB=60°,點(diǎn)O為斜邊AB上一點(diǎn),且OA=2,以OA為半徑的OBC相切于D,與AC交于點(diǎn)E,連接AD

1)求線段CD的長;

2)求ORtABC重疊部分的面積.(結(jié)果保留準(zhǔn)確值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線.

(1)求證:ADE≌△CBF;

(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC上,且AE=CF,作EGFH,分別與對角線BD交于點(diǎn)G、H,連接EH,FG

1)求證:△BFH≌△DEG;

2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案