【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的端點(diǎn)在格點(diǎn)上,按要求畫(huà)出格點(diǎn)三角形,并求其面積.

(1)在圖①中畫(huà)出一個(gè)以 AB為腰的等腰三角形 ABC,其面積為____________.

(2) 在圖②中畫(huà)出一個(gè)以AB為底的等腰三角形ABC,其面積為__________.

【答案】(1)圖見(jiàn)解析;面積為:453;(2)圖見(jiàn)解析;面積為:2.5.

【解析】

(1)根據(jù)所畫(huà)的等腰三角形,數(shù)格點(diǎn)或用割補(bǔ)法分別求出邊長(zhǎng)和高線長(zhǎng),即可求出面積,

(2)運(yùn)用割補(bǔ)法,求出三角形ABC所在矩形的面積,減去多余的三個(gè)三角形面積即可.

:(1)以 AB 為腰的等腰三角形的面積:×2×3=3;

面積為:453;

(2)以 AB 為底的等腰三角形的面積:2×3﹣×3×1﹣×1×2×2=2.5,

故答案為3,2.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)南充市創(chuàng)建全國(guó)衛(wèi)生城市的號(hào)召,某校1 500名學(xué)生參加了衛(wèi)生知識(shí)競(jìng)賽,成績(jī)記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說(shuō)法不正確的是( )

A.樣本容量是200

B.D等所在扇形的圓心角為15°

C.樣本中C等所占百分比是10%

D.估計(jì)全校學(xué)生成績(jī)?yōu)锳等大約有900人

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB16 cm,點(diǎn)C為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)C不與AB重合),點(diǎn)D,E分別是ACBC的中點(diǎn).

(1)DE的長(zhǎng);

(2)知識(shí)遷移:如圖,已知AOB130°,過(guò)角的內(nèi)部任一點(diǎn)C畫(huà)射線OC,若OD,OE分別平分AOCBOC,試說(shuō)明DOE的大小與射線OC的位置無(wú)關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:| ﹣1|﹣ +2sin45°+( 2;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.

(1)直接寫(xiě)出∠AFC的度數(shù):   ;

(2)請(qǐng)你判斷并寫(xiě)出FEFD之間的數(shù)量關(guān)系;

(3)如圖2,在△ABC中,如果∠ACB不是直角,而(1)中的其它條件不變,試判斷線段AE、CDAC之間的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖∠BAC=30°,D 為角平分線上一點(diǎn),DEAC E,DFAC且交ABF.

(1)求證:ADF 是等腰三角形.

(2) DF=10cm,求 DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、D、F、B在同一直線上,AD=BF,AE=BC,且AE∥BC.

求證:(1)EF=CD;(2)EF∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知ADBC,B=D=120°

1)請(qǐng)問(wèn):ABCD平行嗎?為什么?

2)若點(diǎn)E、F在線段CD上,且滿足AC平分∠BAEAF平分∠DAE,如圖②,求∠FAC的度數(shù).

3)若點(diǎn)E在直線CD上,且滿足∠EAC=BAC,求∠ACDAED的值(請(qǐng)自己畫(huà)出正確圖形,并解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB、CD相交于點(diǎn)O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.

(1)求∠AOC的度數(shù);

(2)作射線OG⊥OE,試求出∠AOG的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案