【題目】如圖,中,,的中點,繞點旋轉(zhuǎn),分別與邊交于兩點

⑴求證:是等腰直角三角形;

⑵求證:

⑶若的長為16,求四邊形的面積.

【答案】(1)證明見解析;(2)證明見解析;(3)32

【解析】

1)根據(jù)等腰直角三角形的性質(zhì),得到∠C=∠BAD45°,ADBDCD,然后利用ASA證明三角形全等,即可得到結(jié)論;

2)由(1)可知,AECF然后得到結(jié)論成立;

3)由(1)可知,利用全等三角形面積相等,即可求出四邊形的面積.

(1)證明:∵RtABC中,ABAC,點DBC中點,

∴∠C=∠BAD45°ADBDCD,

∵∠MDN90°

∴∠ADE+ADF=∠ADF+CDF90°,

∴∠ADE=∠CDF

AEDCFD中,

,

∴△AED≌△CFDASA),

EDFD.;

(2)由(1)得,△AED≌△CFD,

AECF

BE+CFBE+AE=AB=AC;

3)∵△AED≌△CFD,

S四邊形AEDFSADE+ SADF

SCDF+ SADF = SADC

= AD2

由已知可得,ADBDCD=8

S四邊形AEDF= AD2==32

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】榮昌公司要將本公司100噸貨物運往某地銷售,經(jīng)與春晨運輸公司協(xié)商,計劃租用甲,乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費用2500元;租用2輛甲型汽車和1輛乙型汽車共需費用2450元,且同一種型號汽車每輛租車費用相同.

(1)求租用一輛甲型汽車,一輛乙型汽車的費用分別是多少元?

(2)若榮昌公司計劃此次租車費用不超過5000元.通過計算求出該公司有幾種租車方案?請你設(shè)計出來,并求出最低的租車費用.

(3)該商業(yè)公司生產(chǎn)的此時令商品每件成本為15元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來20天內(nèi)的日銷量m(件)與時間t(天)的函數(shù)關(guān)系:m=﹣2t+100;該商品每天的價格y(元/件)與時間t(天)的函數(shù)關(guān)系為:y=t+20(1t20),其中t取整數(shù);在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤時間t(天)的增大而增大(含20天的日銷售利潤和第19天的日銷售利潤相等的情況),求a的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的中,,,動點、分別以、的速度從點、同時出發(fā),點從點向點移動.

(1)若點從點移動到點停止,點、分別從點同時出發(fā),問經(jīng)過、兩點之間的距離是多少?

(2)若點從點移動到點停止,點隨之停止移動,點、分別從點、同時出發(fā),問經(jīng)過多長時間、兩點之間的距離是?

(3)若點沿著移動,點、分別從點、同時出發(fā),點從點移動到點停止時,點隨之也停止移動,試探求經(jīng)過多長時間的面積為2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAD=∠CAE90°,ABAD,AEAC,AFCF于點F

1)求證:ABC≌△ADE;

2)已知BF的長為2,DE的長為6,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點DAC上,過點DDFBC于點F,且BDBCAD,則∠CDF的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)、兩種機械設(shè)備,每臺種設(shè)備的成本是種設(shè)備的1.5倍,公司若投入16萬元生產(chǎn)種設(shè)備,36萬元生產(chǎn)種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺,請解答下列問題:

1、兩種設(shè)備每臺的成本分別是多少萬元?

2兩種設(shè)備每臺的售價分別是6萬元、10萬元,且該公司生產(chǎn)兩種設(shè)備各30臺,現(xiàn)公司決定對兩種設(shè)備優(yōu)惠出售,種設(shè)備按原來售價8折出售,B種設(shè)備在原來售價的基礎(chǔ)上優(yōu)惠10%,若設(shè)備全部售出,該公司一共獲利多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過點,且與二次函數(shù)的圖象相交于、兩點.

(1)求這兩個函數(shù)的表達式及點的坐標;

(2)在同一坐標系中畫出這兩個函數(shù)的圖象,并根據(jù)圖象回答:當取何值時,一次函數(shù)的函數(shù)值小于二次函數(shù)的函數(shù)值;

(3)求△BOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時間x(小時)之間的函數(shù)關(guān)系對應(yīng)的圖像線段AB表示甲出發(fā)不足2小時因故停車檢修),請根據(jù)圖像所提供的信息,解決如下問題:

(1)求乙車所行路程y與時間x的函數(shù)關(guān)系式;

(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;

(3)乙車出發(fā)多長時間,兩車在途中第一次相遇?(寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC 中,D BC 邊的中點,E、F 分別在 AD 及其延長線上,CEBF,連接BE、CF.

(1)求證:BDF ≌△CDE;

(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案