【題目】如圖①,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.

(1)在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo);E點(diǎn)的坐標(biāo)
(2)如圖②,若AE上有一動(dòng)點(diǎn)P(不與A、E重合)自A點(diǎn)沿AE方向向E點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),過P點(diǎn)作ED的平行線交AD于點(diǎn)M,過點(diǎn)M作AE的平行線交DE于點(diǎn)N.求四邊形PMNE的面積S與時(shí)間t之間的函數(shù)關(guān)系式;t取何值時(shí),S有最大值,最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時(shí),以A、M、E為頂點(diǎn)的三角形為等腰三角形,并求出相應(yīng)時(shí)刻點(diǎn)M的坐標(biāo).

【答案】
(1)(0,2.5),(2,4)
(2)解:∵PM∥ED,

∴△APM∽△AED.

∴PM:ED=AP:AE,

∴PM=

又∵AP=t,ED=2.5,AE=5,

∴PM= = t,

∵PM∥DE,MN∥EP,

∴四邊形NMPE為平行四邊形.

又∵∠DEA=90°,

∴四邊形PMNE為矩形.

∴S矩形PMNE=PMPE= t(5﹣t)=﹣ t2+ t.

∴S矩形PMNE=﹣ (t﹣ 2+ ,

又∵0< <5.

∴當(dāng)t= 時(shí),S矩形PMNE有最大值


(3)解:(Ⅰ)若以AE為等腰三角形的底,則ME=MA(如圖①)

在Rt△AED中,ME=MA,

∵PM⊥AE,

∴P為AE的中點(diǎn),

∴t=AP= AE=2.5.

又∵PM∥ED,

∴M為AD的中點(diǎn).

過點(diǎn)M作MF⊥OA,垂足為F,則MF是△OAD的中位線,

∴MF= OD= ,OF= OA=2.5,

∴當(dāng)t=2.5時(shí),(0<2.5<5),△AME為等腰三角形.

此時(shí)M點(diǎn)坐標(biāo)為(2.5,1.25).

(Ⅱ)若以AE為等腰三角形的腰,則AM=AE=5(如圖②)

在Rt△AOD中,AD= =

過點(diǎn)M作MF⊥OA,垂足為F.

∵PM∥ED,

∴△APM∽△AED.

∴AP:AE=AM:AD.

∴t=AP= =2

∴PM= t=

∴MF=MP= ,OF=OA﹣AF=OA﹣AP=5﹣2 ,

∴當(dāng)t=2 時(shí),(0<2 <5),此時(shí)M點(diǎn)坐標(biāo)為(5﹣2 , ).

(Ⅲ)根據(jù)圖形可知EM=EA的情況不成立.

綜合綜上所述,當(dāng)t=2.5或t=2 時(shí),以A,M,E為頂點(diǎn)的三角形為等腰三角形,相應(yīng)M點(diǎn)的坐標(biāo)為( , )或(5﹣2 , ).


【解析】解:(1)依題意可知,折痕AD是四邊形OAED的對(duì)稱軸,

∵在Rt△ABE中,AE=AO=5,AB=4,BE= =3.

∴CE=2.

∴E點(diǎn)坐標(biāo)為(2,4).

在Rt△DCE中,DC2+CE2=DE2,

又∵DE=OD.

∴(4﹣OD)2+22=OD2

解得:OD=2.5.

∴D點(diǎn)坐標(biāo)為(0,2.5).

所以答案是:(0,2.5),(2,4);

【考點(diǎn)精析】本題主要考查了二次函數(shù)的最值和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)依次為A(﹣12),B(﹣4,1),C(﹣2,﹣2).

1)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系中作出ABC關(guān)于y軸對(duì)稱的A1B1C1

2)分別寫出點(diǎn)A1、B1、C1的坐標(biāo).

3)求A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBCEFBC,垂足分別為D、F,∠2+3180°,試說明:∠GDC=∠B.請(qǐng)補(bǔ)充說明過程,并在括號(hào)內(nèi)填上相應(yīng)的理由.

解:∵ADBCEFBC(已知)

∴∠ADB=∠EFB90°   

EFAD   ),

   +2180°   ).

又∵∠2+3180°(已知),

∴∠1=∠3   ),

AB      ),

∴∠GDC=∠B   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EF分別是邊BC、AD上的點(diǎn),有下列條件:

AECF;②BEFD;③∠1=∠2;④AECF.

若要添加其中一個(gè)條件,使四邊形AECF一定是平行四邊形,則添加的條件可以是(   )

A. ①②③④ B. ①②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展“綠化家鄉(xiāng)、植樹造林”活動(dòng),為了解全校植樹情況,對(duì)該校甲、乙、丙、丁四個(gè)班級(jí)植樹情況進(jìn)行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問題:

(1)這四個(gè)班共植樹棵;
(2)請(qǐng)你在答題卡上補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)求圖1中“甲”班級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)若四個(gè)班級(jí)植樹的平均成活率是95%,全校共植樹2000棵,請(qǐng)你估計(jì)全校種植的樹中成活的樹有多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶八中七年級(jí) 16 班同學(xué)為了解2019年某小區(qū)家庭月均用水情況,進(jìn)行了一次社會(huì)實(shí)踐活動(dòng).他們隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,

請(qǐng)解答以下問題:

1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

2)若重慶市準(zhǔn)備實(shí)施的階梯水價(jià)中,計(jì)劃對(duì)月用水量不超過 15 噸的家庭實(shí)施水價(jià)下浮政策.為此,該班同學(xué)隨機(jī)從這些用戶中抽取一戶進(jìn)行采訪.則抽到的采訪用戶屬于月用水量不超過 5 噸的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由太原開往運(yùn)城的D5303次列車,途中有6個(gè)停車站,這次列車的不同票價(jià)最多有( )

A. 28 B. 15 C. 56 D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,H在CD的延長(zhǎng)線上,四邊形CEFH也為正方形,則△DBF的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.圓內(nèi)接正六邊形的邊長(zhǎng)與該圓的半徑相等
B.在平面直角坐標(biāo)系中,不同的坐標(biāo)可以表示同一點(diǎn)
C.一元二次方程ax2+bx+c=0(a≠0)一定有實(shí)數(shù)根
D.將△ABC繞A點(diǎn)按順時(shí)針方向旋轉(zhuǎn)60°得△ADE,則△ABC與△ADE不全等

查看答案和解析>>

同步練習(xí)冊(cè)答案