某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天)部分對(duì)應(yīng)值如下表所示.
時(shí)間x(天)48121620
銷量y1(萬(wàn)朵)16242416
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如圖所示.
(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫(xiě)出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫(xiě)出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬(wàn)朵,寫(xiě)出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.

【答案】分析:(1)先判斷出y1與x之間是二次函數(shù)關(guān)系,然后設(shè)y1=ax2+bx+c(a≠0),然后取三組數(shù)據(jù),利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)銷售量增加,從降價(jià)促銷上考慮,然后分兩段利用待定系數(shù)法求一次函數(shù)解析式解答;
(3)分①0≤x≤8時(shí),②8<x≤20時(shí)兩種情況,根據(jù)總銷售量y=y1+y2,整理后再根據(jù)二次函數(shù)的最值問(wèn)題解答.
解答:解:(1)由圖表數(shù)據(jù)觀察可知y1與x之間是二次函數(shù)關(guān)系,
設(shè)y1=ax2+bx+c(a≠0),
,
解得
故y1與x函數(shù)關(guān)系式為y1=-x2+5x(0≤x≤20);

(2)銷售8天后,該花木公司采用了降價(jià)促銷(或廣告宣傳)的方法吸引了淘寶買家的注意力,日銷量逐漸增加;
當(dāng)0≤x≤8,設(shè)y=kx,
∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(8,4),
∴8k=4,
解得k=,
所以,y=x,
當(dāng)8<x≤20時(shí),設(shè)y=mx+n,
∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(8,4)、(20,16),
,
解得,
所以,y=x-4,
綜上,y2=;

(3)當(dāng)0≤x≤8時(shí),
y=y1+y2
=x-x2+5x
=-(x2-22x+121)+
=-(x-11)2+,
∵拋物線開(kāi)口向下,x的取值范圍在對(duì)稱軸左側(cè),y隨x的增大而增大,
∴當(dāng)x=8時(shí),y有最大值,y最大=-(8-11)2+=28;
當(dāng)8<x≤20時(shí),y=y1+y2=x-4-x2+5x,
=-(x2-24x+144)+32,
=-(x-12)2+32,
∵拋物線開(kāi)口向下,頂點(diǎn)在x的取值范圍內(nèi),
∴當(dāng)x=12時(shí),y有最大值為32,
∴該花木公司銷售第12天,日銷售總量最大,最大值為32萬(wàn)朵.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì)在實(shí)際生活中的應(yīng)用.最大銷售量的問(wèn)題常利函數(shù)的增減性來(lái)解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實(shí)際選擇最優(yōu)方案.其中要注意應(yīng)該在自變量的取值范圍內(nèi)求最大值(或最小值),也就是說(shuō)二次函數(shù)的最值不一定在x=-時(shí)取得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天)部分對(duì)應(yīng)值如下表所示.
時(shí)間x(天) 0 4 8 12 16 20
銷量y1(萬(wàn)朵) 0 16 24 24 16 0
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如圖所示.
(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫(xiě)出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫(xiě)出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬(wàn)朵,寫(xiě)出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天)部分對(duì)應(yīng)值如下表所示.
時(shí)間x(天)048121620
銷量y1(萬(wàn)朵)0162424160
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如圖所示.
(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫(xiě)出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫(xiě)出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬(wàn)朵,寫(xiě)出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省南通市通州區(qū)九年級(jí)中考適應(yīng)性考試(一模)數(shù)學(xué)試卷(帶解析) 題型:解答題

某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天)部分對(duì)應(yīng)值如下表所示.

時(shí)間x(天)
0
4
8
12
16
20
銷量y1(萬(wàn)朵)
0
16
24
24
16
0
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如下圖所示.

(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫(xiě)出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫(xiě)出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬(wàn)朵,寫(xiě)出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市通州區(qū)九年級(jí)中考適應(yīng)性考試(一模)數(shù)學(xué)試卷(解析版) 題型:解答題

某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天)部分對(duì)應(yīng)值如下表所示.

時(shí)間x(天)

0

4

8

12

16

20

銷量y1(萬(wàn)朵)

0

16

24

24

16

0

另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如下圖所示.

(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫(xiě)出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫(xiě)出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;

(3)設(shè)該花木公司日銷售總量為y萬(wàn)朵,寫(xiě)出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案