【題目】如圖,四邊形OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)如圖①,在AB上取一點D,將紙片沿OD翻折,使點A落在BC邊上的點E處,求D、E兩點的坐標;
(2)如圖②,若OE上有一動點P(不與O,E重合),從點O出發(fā),以每秒1個單位的速度沿OE方向向點E勻速運動,設(shè)運動時間為t秒(0<t<5),過點P作PM⊥OE交OD于點M,連接ME,求當t為何值時,以點P、M、E為頂點的三角形與△ODA相似?
【答案】(1)點D的坐標為(5,2.5);(2)當t=2.5或4時,以點P、M、E為頂點的三角形與△ODA相似.
【解析】
(1)由翻折的性質(zhì)可知OE=5,然后利用勾股定理可求得CE=3,從而求得點E的坐標,然后在三角形EDB中,利用翻折的性質(zhì)和勾股定理可求得AD的長,從而可求得點D的坐標;
(2)首先證明∠EPM=90°,首先根據(jù)相似三角形的性質(zhì)可知∠PEM=∠DOA或∠PME=∠DOA,然后利用相似三角形的性質(zhì)可求得t的值.
(1)由翻折的性質(zhì)可知:OE=OA=5,
在Rt△OCE中,CE==3,
∴點E的坐標為(3,4),
∴EB=CB﹣CE=5﹣3=2,
設(shè)AD=x,則BD=4﹣x,
由翻折的性質(zhì)可知:ED=AD=x,
在Rt△BED中,EB2+BD2=ED2,即22+(4﹣x)2=x2,
解得:x=2.5,
∴AD=2.5,
∴點D的坐標為(5,2.5);
(2)由翻折的性質(zhì)可知:∠OED=∠DAO=90°,∠DOE=∠DOA,
∵PM∥ED,
∴∠MPE+∠PED=180°,
∴∠MPE=90°,
∴∠MPE=∠DAO,
當點P、M、E為頂點的三角形與△ODA相似時,有△PEM∽△AOD或△PME∽△AOD,
∴∠PEM=∠DOA或∠PME=∠DOA,
①當∠PEM=∠DOA時,在△OPM和△EPM中,,
∴△OPM≌△EPM,
∴PE=PO.
∴t=2.5;
②當∠PME=∠DOA時,OP=t,則PE=5﹣t.
∵∠DOE=∠DOA,
∴tan∠DOE=tan∠DOA,
∴,
∴PM=,
∵∠PME=∠DOA,
∴tan∠PME=tan∠DOA,
∴,即,
解得:t=4,
綜上所述,當t=2.5或4時,以點P、M、E為頂點的三角形與△ODA相似.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=2x2﹣8x+m滿足以下條件:當﹣2<x<﹣1時,它的圖象位于x軸的下方;當6<x<7時,它的圖象位于x軸的上方,則m的值為( 。
A. 8 B. ﹣10 C. ﹣42 D. ﹣24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=4cm,BC=3cm,若動點P從點C開始,沿C→A→B→C的路徑運動一周,且速度為每秒2cm,設(shè)運動時間為t秒,當t=_____時,點P與△ABC的某兩個頂點構(gòu)成等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE交AE于點G.
(1)求證:GF=BF;
(2)若EB=1,BC=4,求AG的長;
(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FOED=ODEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“感冒”,某學(xué)校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后y與x成反比例如圖。現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量為6毫克,請根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為___,自變量x的取值范圍是___;藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為___.
(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學(xué)生方可進教室,那么從消毒開始,至少需要經(jīng)過___分鐘后,學(xué)生才能回到教室;
(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病毒,那么此次消毒有效嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AE=BE,∠AED =∠ABC.
(1)求證:BD平分∠ABC;
(2)若AB = CB,∠AED =4∠EAD,求∠C的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com