【題目】如圖,中,的垂直平分線交的平分線于點(diǎn),過(guò)作于點(diǎn),若,,則( )
A.B.C.D.
【答案】C
【解析】
連接BD、AD,過(guò)點(diǎn)D作DF⊥CB于點(diǎn)F,利用角平分線及線段垂直平分線的性質(zhì)可求出BD=AD,DE=DF,依據(jù)HL定理可判斷出Rt△AED≌Rt△BFD,根據(jù)全等三角形的性質(zhì)即可得出BF=AE,再運(yùn)用AAS定理可證得Rt△CED≌Rt△CFD,證出CE=CF,設(shè)AE的長(zhǎng)度為x,根據(jù)CE=CF列方程求解即可.
如圖, 連接BD、AD,過(guò)點(diǎn)D作DF⊥CB于點(diǎn)F.
∵的垂直平分線交的平分線于點(diǎn),DE⊥AC,DF⊥BC,
∴BD=AD,DE=DF.∴Rt△AED≌Rt△BFD.
∴BF=AE.
又∵∠ECD=∠FCD,∠CED=∠CFD,CA=CA,∴Rt△CED≌Rt△CFD,
∴CE=CF,
設(shè)AE的長(zhǎng)度為x,則CE=10-x,CF=CB+BF= CB+AE= 4+x,
∴可列方程10-x=4+x,x=3,∴AE=3;
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)N沿路線O→A→C運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△ONC的面積是△OAC面積的時(shí),求出這時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】滿(mǎn)足下列條件的△ABC不是直角三角形的是( )
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.∠A﹣∠B=∠CD.BC=3,AC=4,AB=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)如圖①,在AB上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求D、E兩點(diǎn)的坐標(biāo);
(2)如圖②,若OE上有一動(dòng)點(diǎn)P(不與O,E重合),從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿OE方向向點(diǎn)E勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5),過(guò)點(diǎn)P作PM⊥OE交OD于點(diǎn)M,連接ME,求當(dāng)t為何值時(shí),以點(diǎn)P、M、E為頂點(diǎn)的三角形與△ODA相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2﹣(m+1)x+m
(1)求證:拋物線與x軸一定有交點(diǎn);
(2)若拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),x1<0<x2,且,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在八年級(jí)(1)班學(xué)生中開(kāi)展對(duì)于“我國(guó)國(guó)家公祭日”知曉情況的問(wèn)卷調(diào)調(diào)查. 問(wèn)卷調(diào)查的結(jié)果分為A、B、C、D四類(lèi),其中A類(lèi)表示“非常了解”;B類(lèi)表示“比較了解”;C類(lèi)表示“基本了解”;D類(lèi)表示“不太了解”;班長(zhǎng)將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)上述信息解答下列問(wèn)題:
(1)該班參與問(wèn)卷調(diào)查的人數(shù)有 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求C類(lèi)人數(shù)占總調(diào)查人數(shù)的百分比;
(4)求扇形統(tǒng)計(jì)圖中A類(lèi)所對(duì)應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結(jié)論有________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:CP是等邊△ABC的外角∠ACE的平分線,點(diǎn)D在邊BC上,以D為頂點(diǎn),DA為一條邊作∠ADF=60°,另一邊交射線CP于F
(1)求證:AD=FD
(2)若AB=2,BD=x,DF=y,求y關(guān)于x的函數(shù)解析式
(3)若點(diǎn)D在線段BC的延長(zhǎng)線上,(1)中的結(jié)論還一定成立嗎?若成立,請(qǐng)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn),且∠EAF=60°,請(qǐng)?zhí)骄繄D中線段BE,EF,FD之間的數(shù)量關(guān)系是什么?
小明探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG.先證明△ABE≌△ADG,得AE=AG;再由條件可得∠EAF=∠GAF,證明△AEF≌△AGF,進(jìn)而可得線段BE,EF,FD之間的數(shù)量關(guān)系是 .
(2)拓展應(yīng)用:
如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD.問(wèn)(1)中的線段BE,EF,FD之間的數(shù)量關(guān)系是否還成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com