【題目】 有一款如圖(1)所示的健身器材,可通過調(diào)節(jié)AB的長(zhǎng)度來調(diào)節(jié)椅子的高度,其平面示意圖如圖(2)所示,經(jīng)測(cè)量,ADDE的夾角為75°ACAD的夾角為45°,且DEAB.現(xiàn)調(diào)整AB的長(zhǎng)度,當(dāng)∠BCA75°時(shí)測(cè)得點(diǎn)C到地面的距離為25cm.請(qǐng)求出此時(shí)AB的長(zhǎng)度(結(jié)果保留根號(hào)).

【答案】AB的長(zhǎng)度是cm

【解析】

CGAD于點(diǎn)G,作CFAB于點(diǎn)F,通過解直角三角形求得AF,BF的長(zhǎng)度,本題得以解決.

解:

由已知可得,

EDA=75°,∠BCA=75°,∠CAG=45°,CG=25cm,

AC= ,

DEAB

∴∠EDA+BAD=180°,

∴∠BAD=105°

∴∠CAF=60°,

∵∠CFA=90°,AC=25

∴∠ACF=30°,

AF=,CF=,

∵∠ACB=75°,∠ACF=30°,∠CFB=90°CF=,

∴∠BCF=45°,

BF=CF=,

AB=AF+BF==cm

答:此時(shí)AB的長(zhǎng)度是cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,菱形 ABCD 的邊 AD∥x 軸,直線y2x+b x 軸交于點(diǎn) B,與反比例函數(shù) yk0)圖象交于點(diǎn) D 和點(diǎn) EOB3,OA4

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)點(diǎn) P 為線段 BE 上的一個(gè)動(dòng)點(diǎn),過點(diǎn) P x 軸的平行線,當(dāng)△CDE 被這條平行線分成面積相等的兩部分時(shí),求點(diǎn) P 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)BBECG,垂足為E且在AD上,BEPC于點(diǎn)F.

(1)如圖1,若點(diǎn)EAD的中點(diǎn),求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當(dāng)AD=25,且AE<DE時(shí),求cosPCB的值;

③當(dāng)BP=9時(shí),求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A2,0)、B02).

1)求這條拋物線的解析式;

2)如圖,點(diǎn)P是拋物線上一動(dòng)點(diǎn),連接BP,OP,若△BOP是以BO為底邊的等腰三角形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)民也能報(bào)銷醫(yī)療費(fèi)了!”這是國(guó)家推行新型農(nóng)村醫(yī)療合作的成果.村民只要每人每年交10元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費(fèi),年終時(shí)可得到按一定比例返回的返回款,這一舉措極大地增強(qiáng)了農(nóng)民抵御大病風(fēng)險(xiǎn)的能力.小華與同學(xué)隨機(jī)調(diào)查了他們鄉(xiāng)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答以下問題:

(1)本次調(diào)查了 名村民,被調(diào)查的村民中,有 人參加合作醫(yī)療得到了返回款?

(2)若該鄉(xiāng)有10000名村民,請(qǐng)你估計(jì)有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到9680人,假設(shè)這兩年的年平均增長(zhǎng)率相同,求年平均增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,于點(diǎn),過作直線于另一點(diǎn),連接

1)求證:平分;

2)若是直徑上方半圓弧上一動(dòng)點(diǎn),的半徑為2,則

①當(dāng)弦的長(zhǎng)是 時(shí),以,,為頂點(diǎn)的四邊形是正方形;

②當(dāng)的長(zhǎng)度是 時(shí),以,,為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線)與軸交于點(diǎn),與軸交于,兩點(diǎn),其中點(diǎn)的坐標(biāo)為,拋物線的對(duì)稱軸交軸于點(diǎn),并與拋物線的對(duì)稱軸交于點(diǎn).現(xiàn)有下列結(jié)論:①;②;③;④.其中所有正確結(jié)論的序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,BC的延長(zhǎng)線與⊙O的切線AF交于點(diǎn)F

(1)求證:∠ABC=2CAF;

(2)若AC=2,CEEB=1:4,求CEAF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)EAB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長(zhǎng)交BC于點(diǎn)H

1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;

2)求證:AH是⊙O的切線;

3AB6,CH2,則AH的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案