【題目】 有一款如圖(1)所示的健身器材,可通過調(diào)節(jié)AB的長(zhǎng)度來調(diào)節(jié)椅子的高度,其平面示意圖如圖(2)所示,經(jīng)測(cè)量,AD與DE的夾角為75°,AC與AD的夾角為45°,且DE∥AB.現(xiàn)調(diào)整AB的長(zhǎng)度,當(dāng)∠BCA為75°時(shí)測(cè)得點(diǎn)C到地面的距離為25cm.請(qǐng)求出此時(shí)AB的長(zhǎng)度(結(jié)果保留根號(hào)).
【答案】AB的長(zhǎng)度是cm.
【解析】
作CG⊥AD于點(diǎn)G,作CF⊥AB于點(diǎn)F,通過解直角三角形求得AF,BF的長(zhǎng)度,本題得以解決.
解:
由已知可得,
∠EDA=75°,∠BCA=75°,∠CAG=45°,CG=25cm,
∴AC= ,
∵DE∥AB,
∴∠EDA+∠BAD=180°,
∴∠BAD=105°,
∴∠CAF=60°,
∵∠CFA=90°,AC=25,
∴∠ACF=30°,
∴AF=,CF=,
∵∠ACB=75°,∠ACF=30°,∠CFB=90°,CF=,
∴∠BCF=45°,
∴BF=CF=,
∴AB=AF+BF==cm,
答:此時(shí)AB的長(zhǎng)度是cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,菱形 ABCD 的邊 AD∥x 軸,直線y=2x+b 與 x 軸交于點(diǎn) B,與反比例函數(shù) y=(k>0)圖象交于點(diǎn) D 和點(diǎn) E,OB=3,OA=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn) P 為線段 BE 上的一個(gè)動(dòng)點(diǎn),過點(diǎn) P 作 x 軸的平行線,當(dāng)△CDE 被這條平行線分成面積相等的兩部分時(shí),求點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把△PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)B作BE⊥CG,垂足為E且在AD上,BE交PC于點(diǎn)F.
(1)如圖1,若點(diǎn)E是AD的中點(diǎn),求證:△AEB≌△DEC;
(2)如圖2,①求證:BP=BF;
②當(dāng)AD=25,且AE<DE時(shí),求cos∠PCB的值;
③當(dāng)BP=9時(shí),求BEEF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(2,0)、B(0,2).
(1)求這條拋物線的解析式;
(2)如圖,點(diǎn)P是拋物線上一動(dòng)點(diǎn),連接BP,OP,若△BOP是以BO為底邊的等腰三角形,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“農(nóng)民也能報(bào)銷醫(yī)療費(fèi)了!”這是國(guó)家推行新型農(nóng)村醫(yī)療合作的成果.村民只要每人每年交10元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費(fèi),年終時(shí)可得到按一定比例返回的返回款,這一舉措極大地增強(qiáng)了農(nóng)民抵御大病風(fēng)險(xiǎn)的能力.小華與同學(xué)隨機(jī)調(diào)查了他們鄉(xiāng)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答以下問題:
(1)本次調(diào)查了 名村民,被調(diào)查的村民中,有 人參加合作醫(yī)療得到了返回款?
(2)若該鄉(xiāng)有10000名村民,請(qǐng)你估計(jì)有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到9680人,假設(shè)這兩年的年平均增長(zhǎng)率相同,求年平均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,切于點(diǎn),過作直線交于另一點(diǎn),連接、.
(1)求證:平分;
(2)若是直徑上方半圓弧上一動(dòng)點(diǎn),的半徑為2,則
①當(dāng)弦的長(zhǎng)是 時(shí),以,,,為頂點(diǎn)的四邊形是正方形;
②當(dāng)的長(zhǎng)度是 時(shí),以,,,為頂點(diǎn)的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線()與軸交于點(diǎn),與軸交于,兩點(diǎn),其中點(diǎn)的坐標(biāo)為,拋物線的對(duì)稱軸交軸于點(diǎn),,并與拋物線的對(duì)稱軸交于點(diǎn).現(xiàn)有下列結(jié)論:①;②;③;④.其中所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,BC的延長(zhǎng)線與⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)E是AB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長(zhǎng)交BC于點(diǎn)H.
(1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;
(2)求證:AH是⊙O的切線;
(3)若AB=6,CH=2,則AH的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com